Please check the examination details below before entering your candidate information

Pearson Edexcel International GCSE

Centre Number Candidate Number

Monday 7 January 2019

Morning (Time: 2 hours)	Paper Reference 4MA0/3H

Mathematics A

```
Paper 3H
Higher Tier
```


You must have:

Total Marks
Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided - there may be more space than you need.
- Calculators may be used.
- You must NOT write anything on the formulae page. Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100 .
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

International GCSE MATHEMATICS
 FORMULAE SHEET - HIGHER TIER

Pythagoras'

$a^{2}+b^{2}=c^{2}$
Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

adj $=$ hyp $\times \cos \theta$
opp $=$ hyp $\times \sin \theta$
opp $=\operatorname{adj} \times \tan \theta$
or $\quad \sin \theta=\frac{\text { opp }}{\text { hyp }}$
$\cos \theta=\frac{\text { adj }}{\text { hyp }}$
$\tan \theta=\frac{\text { opp }}{\text { adj }}$

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

In any triangle $A B C$

Sine rule: $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ Cosine rule: $a^{2}=b^{2}+c^{2}-2 b c \cos A$

Area of triangle $=\frac{1}{2} a b \sin C$

Volume of cylinder $=\pi r^{2} h$
Curved surface area of cylinder $=2 \pi r h$

Area of a trapezium $=\frac{1}{2}(a+b) h$

The Quadratic Equation
The solutions of $a x^{2}+b x+c=0$, where $a \neq 0$, are given by

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Write your answers in the spaces provided.
You must write down all the stages in your working.
1 Jerry drove 315 kilometres from London to Leeds.
His average speed was $75 \mathrm{~km} / \mathrm{h}$.
Work out how long it took Jerry to drive from London to Leeds.
Give your answer in hours and minutes.

2 Point A has coordinates $(4,-1)$
Point B has coordinates $(9,7)$
Work out the coordinates of the midpoint of the line $A B$.
$3 \mathscr{E}=\{$ whole numbers from 3 to 18$\}$
$A=\{3,6,9,18\}$
$B=\{3,6,9,12,15\}$
$C=\{6,12,18\}$
(a) List the members of the set
(i) $A \cap B$
(ii) $A \cup C$

Sasha writes down
$12 \notin A$
(b) Is Sasha correct?

Give a reason for your answer.

4 A circle has diameter 18 cm .
Work out the circumference of the circle.
Give your answer correct to 1 decimal place.

5 Josh has 40 counters in a bag.
In the bag, there are
18 red counters
13 blue counters 9 yellow counters

Josh puts some more red counters into the bag.
Josh is now going to take at random a counter from the bag.
The probability that he will take a red counter is $\frac{1}{2}$
Work out the probability that he will take a yellow counter.
(a) Factorise $y^{2}+y$
(b) Solve $3(m+7)=12-5 m$

Show clear algebraic working.

7 There are 96 cards on a table.
Each card is either red or black.
The ratio of the number of red cards to the number of black cards is $5: 7$
There is a circle on 35% of the red cards.
There is a circle on $\frac{3}{14}$ of the black cards.
On how many of the 96 cards is there a circle?

8 On the grid, draw the graph of $y+3 x=4$ for values of x from -2 to 3

(Total for Question 8 is $\mathbf{3}$ marks)

9

Diagram NOT accurately drawn

Work out the length of $R P$.
Give your answer correct to 3 significant figures.

10 Emily made 6 cakes.
It cost her a total of $£ 7.60$ to make the cakes.
Emily sold 2 of the cakes for $£ 3.50$ each.
She sold the other 4 cakes for $£ 4.25$ each.
Work out Emily's percentage profit.
Give your percentage correct to the nearest whole number.

11 Here is a solid prism.

The cross section of the prism is a trapezium.
Work out the total surface area of the prism.

Diagram NOT accurately drawn

12 There are 40 children at a kindergarten.
24 of the children are boys and 16 of the children are girls.
The boys have a mean height of 113 cm .
The girls have a mean height of 110 cm .
Calculate the mean height of all 40 children at the kindergarten.

13 Remi invests 18000 dirham in a savings account for 3 years.
He gets 1.2% per year compound interest.
How much money will Remi have in his savings account at the end of the 3 years?
Give your answer to the nearest dirham.

14 The grouped frequency table gives information about the distances that 120 people travel to get to work.

Distance ($\boldsymbol{d} \mathbf{~ k m})$	Frequency
$0<d \leqslant 5$	8
$5<d \leqslant 10$	20
$10<d \leqslant 15$	27
$15<d \leqslant 20$	29
$20<d \leqslant 25$	18
$25<d \leqslant 30$	11
$30<d \leqslant 35$	7

(a) Complete the cumulative frequency table.

Distance $(\boldsymbol{d} \mathbf{~ k m})$	Cumulative frequency
$0<d \leqslant 5$	
$0<d \leqslant 10$	
$0<d \leqslant 15$	
$0<d \leqslant 20$	
$0<d \leqslant 25$	
$0<d \leqslant 30$	
$0<d \leqslant 35$	

Cumulative frequency

(c) Use your graph to find an estimate for the interquartile range of the distances travelled.
(b) On the grid, draw a cumulative frequency graph for your table.
km
(2)
(Total for Question 14 is 5 marks)

15 (a) Simplify $g^{8} \div g^{2}$
(b) Simplify $6 e^{2} m^{7} \times 3 \mathrm{em}^{4}$
(c) Simplify $\left(64 a^{6} c^{2}\right)^{\frac{1}{2}}$
(d) Factorise $x^{2}-1$
(e) Make k the subject of $f=\sqrt{\frac{1-2 k}{3}}$

A is a point on $P R$ and B is a point on $Q R$ so that $A B$ is parallel to $P Q$.
$A R=5 \mathrm{~cm}$
$A B=6 \mathrm{~cm}$
$P Q=15 \mathrm{~cm}$
(a) Work out the length of $A P$.

Given that the area of triangle $P Q R$ is $88 \mathrm{~cm}^{2}$
(b) work out the area of triangle $A R B$.
cm^{2}
(2)

17 Use algebra to show that the recurring decimal $0.0 \dot{2} \dot{4}=\frac{4}{165}$
$\mathbf{1 8} \mathbf{a}=\binom{-5}{6} \quad \mathbf{b}=\binom{3}{2} \quad \mathbf{c}=\binom{4}{-2}$
(a) Write $2 \mathbf{b}-\mathbf{c}$ as a column vector.

Cho says that the vector $\mathbf{a}-\mathbf{b}$ is parallel to the vector \mathbf{c}
(b) Is Cho correct?

Give a reason for your answer.

19 (a) Express $\frac{1}{2 x+1}-\frac{3}{x+5}$ as a single fraction. Give your answer as simply as possible.
(b) Solve the inequality $6(x-1)^{2}>24$ Show clear algebraic working.

20

Diagram NOT accurately drawn
A, B and C are points on a circle，centre O ．
$T A P$ is a tangent to the circle．
$T B O C$ is a straight line．
Angle $A C T=29^{\circ}$
Work out the value of x ．
Give a reason for each stage in your working．

21 The functions f and g are such that

$$
\begin{aligned}
& \mathrm{f}(x)=\frac{1}{2} x+3 \\
& \mathrm{~g}(x)=\frac{14}{2 x-3}
\end{aligned}
$$

(a) Work out $f(3)$
(b) State the value of x that cannot be included in any domain of g.
(c) Solve $\mathrm{f}^{-1}(x)=\operatorname{gf}(x)$

Show clear algebraic working.

22 The diagram shows a parallelogram $L M N P$.

Diagram NOT accurately drawn
13.3 cm

Calculate the area of the parallelogram.
Give your answer correct to 3 significant figures.
$23 M=\frac{b-c}{a}$
$a=5.3 \quad$ correct to 1 decimal place.
$b=346.6$ correct to 1 decimal place.
$c=80.0 \quad$ correct to 1 decimal place.
Calculate the upper bound for the value of M. Show your working clearly.

24 There are only 3 white and 5 black counters in box \mathbf{X}. There are only 4 white and 3 black counters in box \mathbf{Y}.

box \mathbf{X}

box \mathbf{Y}

Michael takes at random 2 counters from box \mathbf{X} and puts both counters into box \mathbf{Y}. He then takes at random 1 counter from box \mathbf{Y} and puts this counter into box \mathbf{X}.

Work out the probability that there is now an equal number of white counters and black counters in box \mathbf{Y}.

BLANK PAGE

Do NOT write on this page.

BLANK PAGE

Do NOT write on this page.

