

Mark Scheme (Results)

Summer 2018

Pearson Edexcel International GCSE In Mathematics A (4MA1) Paper 2HR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018 Publications Code 4MA1_2HR_1806_MS All the material in this publication is copyright © Pearson Education Ltd 2018

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

International GCSE Maths

Apart from questions 4d, 17a, 17b, 18, 19, 23 (where the mark scheme states otherwise) the correct answer, unless clearly obtained from an incorrect method, should be taken to imply a correct method.

Question	Working	Answer	Mark	Notes
1	eg $\frac{x+10+y}{3} = 11$ oe or $y - x = 7$ oe 3 × 11 (=33)		2	M1 for one correct equation in x and y OR finding the total of x, 10 and y OR two numbers with a sum of 23 OR two numbers with a range of 7 Note: condone non-integers for the award of M1
		x = 8, y = 15		A1
				Total 2 marks

2	(area =) 2 × 1.25 (=2.5)		3	M1
	$(F =) 42 \times "2.5" \text{ or } 42 = \frac{F}{"2.5"}$			M1 Correct substitution into pressure formula
		105		A1 cao
				Total 3 marks

Question	Working	Answer	Mark	Notes
3	eg (6.3 × 1000) ÷ 210 (= 30)		4	M1 for a method to find the number of candles, could work in grams or kg
	$\frac{2}{5}$ × "30"×13 (=156)			M1 for a method to find money made from the \$13 candles
	$\left(1-\frac{2}{5}\right) \times "30" \times 0.8 \times 13 \ (=187.20)$			M1 for a method to find money made from the reduced candles
		343.2(0)		A1
				Total 4 marks

4 (a)	3 <i>c</i> - 21 + 6 <i>c</i> + 8		2	M1 For 3 or 4 terms correct
		9 <i>c</i> – 13		A1
(b)	$x^2 - 2x + 7x - 14$		2	M1 For 3 correct terms or for 4 correct terms ignoring signs or for $x^2 + 5x + k$ for any non-zero value of k or for + 5x - 14
		$x^2 + 5x - 14$		A1
(c)		7 <i>y</i> (4 <i>y</i> - 3)	2	B2 B1 for $y(28y - 21)$ or $7(4y^2 - 3y)$ or 7y(4y + k) or $7y(ay - 3)$
(d)	eg $7x - 2 = 4(3x + 1)$ oe		3	M1 correct first step
	7x - 12x = 4 + 2 oe or $-2 - 4 = 12x - 7x$ oe			M1 for rearranging the <i>x</i> terms on one side and the numerical terms on the other. ft rearranging their expansion ax + b = cx + d eg 7x - 2 = 12x + 4
		_6		A1 oe, dep on M1
		5		
				Total 9 marks

Question	Working	Answer	Mark	Notes
5	6h 42 min = 6.7 h or $6\frac{42}{60}$ oe or 402 (mins) or 24120 (secs) OR 10.8(33)(km) eg 6.7 × 650 or (402 × 650) ÷ 60 or (24120 × 650) ÷ 3600 or 6 × 650 + 42 × 10.8	4355	3	 B1 for converting 6h 42min into hours or minutes or seconds OR finding distance travelled in 1 minute M1 use of s × t, allow 6.42 × 650 (=4173) A1
				Total 3 marks

6	Eg $\frac{1.5}{100} \times 20000$ oe or 300 $\frac{1.5}{100} \times (20000 + '300') = 304.5$ $\frac{1.5}{100} \times (20000 + '300' + '304.5')$ = 20913.5675	OR 20 000 ×1.015 ³		3	M1	for eg $\frac{1.5}{100} \times 20\ 000$ oe or 300 for completing method	OR M2 for 20 000×1.015 ³ or20 000 × 1.015 ⁴ or 21 227.27 (M1 for 20 000 × 1.015 ² or 20 604.5)
						Accept 1 + 0.015 throughout	as equivalent to 1.015
							narks gained, award M1 for oe or 20900 or 900
			20 914		A1	Answers in range	20 913- 20 914
							Total 3 marks

Qu	estion	Working	Answer	Mark	Notes		
7	(a)		$5y^4$	2	B2	B1 for fully simplifying terms in x or terms in y	
	(b)	$h-f=3e$ or $\frac{h}{3}=e+\frac{f}{3}$ or $\frac{h-f}{3}$		2	M1		
			$e = \frac{h - f}{3}$		A1	oe, accept $e = \frac{f-h}{-3}$	
						Total 4 marks	

8	160 ² + 200 ² (=65600)		3	M1
	$\sqrt{160^2 + 200^2}$			M1
		256		A1 accept 256 - 256.2
				Total 3 marks

9	Interior angle of pentagon (180 \times 3) \div 5 (= 108) oe		4	M1 or exterior angle of pentagon = $\frac{360}{5}$ (= 72)
	Interior angle of octagon (180 × 6) \div 8 (= 135) oe			M1 or exterior angle of octagon $=\frac{360}{8}(=45)$
	(<i>CBF</i> =) 360 - ("108" + "135") (= 117)			M1 (<i>CBF</i> =) "72" + "45" (= 117)
		31.5		A1
				Total 4 marks

Question	Working	Answer	Mark	Notes
10	24.3 - 16 (= 8.3)		4	M1 Forming a right angled triangle with 24.3 – 16 on one side, 8.3 may be seen on diagram
	$\tan y = \frac{12.5}{"8.3"} \text{ or } \tan z = \frac{"8.3"}{12.5}$ OR $\sqrt{"8.3"^2 + 12.5^2}$ (= 15.004) and $\sin y = \frac{12.5}{"15.0"}$ or $\sin z = \frac{"8.3"}{"15.0"}$ or $\cos z = \frac{"8.3"}{"15.0"}$			M1 for a correct trig statement involving angle <i>CDE</i> or <i>DCE</i> where <i>E</i> is on the line <i>AD</i> and <i>CE</i> is perpendicular to <i>AD</i>
	$\tan^{-1}\left(\frac{12.5}{"8.3"}\right) (= 56.415 \dots) \text{ or } \tan^{-1}\left(\frac{"8.3"}{12.5}\right) (= 33.584 \dots)$ or $\sin^{-1}\left(\frac{12.5}{"15.0"}\right) (= 56.415 \dots) \text{ or } \sin^{-1}\left(\frac{"8.3"}{"15.0"}\right) (= 33.584 \dots)$ or $\cos^{-1}\left(\frac{"8.3"}{"15.0"}\right) (= 56.415 \dots) \text{ or } \cos^{-1}\left(\frac{12.5}{"15.0"}\right) (= 33.584 \dots)$			M1 complete method to find angle CDE or DCE
		123.6		A1 123.5 - 123.6
				Total 4 marks

Que	estion	Working	Answer	Mark		Notes
11	(a)		$100 < m \le 200$	1	B1	
	(b)		10, 46, 80, 100, 115, 120	1	B1	
	(c)		Correct cumulative frequency graph	2	B2	fully correct cf graph – points at ends of intervals and joined with curve or line segments
						If not B2 then B1(ft from a table with only one arithmetic error)
						for 5 or 6 (ft from a table with only one arithmetic error) of their points at ends of intervals and joined with curve or line segments
						OR for 5 or 6 points plotted correctly at ends of intervals not joined
						OR for 5 or 6 of their points from table plotted consistently within each interval (not at upper ends of intervals) at their correct heights and joined with smooth curve or line segments
	(d)	eg reading of 155 and 350 stated or indicated on graph		2	M1ft	For use of 30 and 90, or 30.25 and 90.75, or ft from a cf graph provided method is shown.
			175 – 205		A1ft	from their cf graph
	(e)			2	M1	For reading off cf from money spent at £450 (108 ft) ft from cf graph
			12 or 13		A1	
						Total 8 marks

Question	Working	Answer	Mark	Notes	
12	eg (COA=) 360 - (2 × 90 + 74) (=106) or (COA=) 180 - 74 (=106) or OAB = 90 or OCB = 90		3	M1 Fully correct method to find COA OAB or OCB	l or
	"106" ÷ 2			M1	
		53		A1 values may be seen on diagram throughout	
				Total 3 ma	arks

13	eg $m = \frac{1}{2}$ or $y = \frac{1}{2}x + c$		4	M1	for gradient = $\frac{1}{2}$
	eg 7 = $\frac{1}{2} \times 4 + c$ or $y - 7 = \frac{1}{2}(x - 4)$			M1	for substituting (4,7) into an equation with gradient = $\frac{1}{2}$
	eg $\frac{1}{2}x + 5 = 0$ or $-7 = \frac{1}{2}(x - 4)$			M1	Inputting $y = 0$ into their correct equation
		(-10, 0)		A1	SC B2 for an answer of (18,0) or (0.5,0) oe or (7.5,0) oe
					Total 4 marks

Question	Working	Answer	Mark	Notes
14	$2^7 = 4^{2x} \times 2^x$ or $128 = (2^2)^{2x} \times 2^x$		3	M1 Replacing 128 by 2^7 or 4 by 2^2
	7 = 2(2x) + x	-		M1
		1.4		
				A1 oe
			-	Total 3 marks
				lotal 3 marks

15 (i)	19	1	B1
(ii)	5	1	B1
(iii)	29	1	B1
			Total 3 marks

Question	Working	Answer	Mark	Notes
Question 16	Working eg P(o, o, o) = $\frac{5}{8} \times \frac{4}{7} \times \frac{3}{6} \left(= \frac{60}{336} = \frac{5}{28} = 0.178(571) \right)$ or P(e, e, o) = $\frac{3}{8} \times \frac{2}{7} \times \frac{5}{6} \left(= \frac{30}{336} = \frac{5}{56} = 0.0892(857) \right)$	Answer <u>25</u> <u>56</u>	4 4	NotesM1for $\frac{a}{8} \times \frac{b}{7} \times \frac{c}{6}$ where $a < 8, b < 7, c < 6$ M1for a complete method to find P(o, o, o) or P(o, e, e) or P(e, o, e) or P(e, e, o)M1for a complete method to find P(o, o, o) and at least one of P(o, e, e), P(e, o, e), P(e, e, o)A1 $oe \frac{150}{336}, 0.446(428571)$
				SC B2 for $\frac{260}{512} \left(= \frac{65}{128} = 0.507(8125) \right)$, B1 for $\frac{170}{512} \left(= \frac{85}{256} = 0.332(03125) \right)$ Total 4 marks

Question	Working	Answer	Mark	Notes
17 (a)	eg $x = 0.436$ and $100x = 43.63$ or $10x = 4.36$ and $1000x = 436.36$		2	M1 eg two decimals that when subtracted give a finite decimal
	$99x = 43.2, x = \frac{43.2}{99}$ or $990x = 432, x = \frac{432}{990}$	show		A1 for completing the 'show that' arriving at given answer from correct working.
(b)			3	M1 for $\sqrt{20} = 2\sqrt{5}$ and $\sqrt{80} = 4\sqrt{5}$ or $\frac{\sqrt{20} + \sqrt{80}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$ or $\frac{\sqrt{20} + 2\sqrt{20}}{\sqrt{3}}$
				M1dep for $\frac{6\sqrt{15}}{3}$ or $2\sqrt{15}$ or $\frac{3\sqrt{60}}{3}$ oe
		$\sqrt{60}$		A1 dep on M2, accept $a = 60$
				Total 5 marks

Question	Wa	orking	Answer	Mark		Notes
18	$2(2y - 3)^2 + 3y^2 = 14$ or	$2x^2 + 3\left(\frac{x+3}{2}\right)^2 = 14$		5	M1	correct first step eg substitution
	$11y^2 - 24y + 4 = 0$	$11x^2 + 18x - 29 = 0$			A1	for a correct simplified quadratic
	$\frac{(11y-2)(y-2) (=0)}{\text{or} \frac{24 \pm \sqrt{(-24)^2 - 4 \times 11 \times 4}}{2 \times 11}}$	(11x + 29)(x - 1) (=0) or $\frac{-18 \pm \sqrt{18^2 - 4 \times 11 \times -29}}{2 \times 11}$			M1	(dep on M1) first step to solve their 3 term quadratic
	$y = \frac{2}{11}$ or $y = 2$ (need both)	$x = \frac{-29}{11} \text{ or } x = 1 (\text{need both})$			A1	
			$x = \frac{-29}{11}, y = \frac{2}{11}$ $x = 1, y = 2$		A1	Dep on first M1 Must be paired correctly Must be 2 dp or better
						Total 5 marks

Question	Working	Answer	Mark	Notes	
19	8.35, 8.45, 6.25, 6.35, 0.265, 0.275		3	M1 For sight of 8.35, 8.45, 6.25 0.265 or 0.275	, 6.35,
	$(a=)\frac{8.45-6.25}{0.265}$			M1 $a = \frac{UB - LB_1}{LB_2}$	
				Where $8.4 < UB \le 8.45$ and	i
				$6.25 \le LB_1 < 6.3$ and $0.265 \le LB_2 < 0.27$	
		8.3		A1 8.3(018867) dep on M2	
				Total	3 marks

20	eg (4x + 3)(x - 2) or (x =) $\frac{-(-5)\pm\sqrt{(-5)^2-4\times4\times(-6)}}{2\times4}$		4	M first step to finding the critical values 1
	$(x =) -\frac{3}{4}$ and 2			A for two correct critical values 1
				M (dep on two critical values having been found) 1 for a diagram showing the inequalities OR $x < a$ and $x > b$ where a is their lower critical value and b is their upper critical value OR $x > 2$ OR $x < \frac{-3}{4}$ OR $\frac{-3}{4} > x > 2$
		$\begin{array}{c} x < -\frac{3}{4} \\ x > 2 \end{array}$		A for both correct inequalities 1
				Total 4 marks

Ques	stion	Working	Answer	Mark	Notes
21	(a)		(-2, -2), (1, 6), (4, -2) Plotted and joined	2	B2 Fully correct graph- professional judgment required.
					(B1 for $(1, 6)$ plotted OR $(-2, -2)$ and $(4, -2)$ plotted)
	(b)		(2, -1), (-1, 3) (-4, -1) Plotted and joined	2	B2 Fully correct graph – professional judgment required.
					(B1 for 2 of the 3 points plotted)
					SC B1 for a correct reflection in the x-axis
					Total 4 marks
-				T	
22		$\frac{(2x+5)(2x-5)}{(5x+7)(x-1)} \times \frac{2(2x-5)-3(x-3)}{(x-3)(2x-5)}$		4	M1 For $4x^2 - 25 = (2x + 5)(2x - 5)$ or $5x^2 + 2x - 7 = (5x + 7)(x - 1)$
		$\frac{(2x+5)(2x-5)}{(5x+7)(x-1)} \times \frac{x-1}{(x-3)(2x-5)}$			M1 $\frac{2}{x-3} - \frac{3}{2x-5} = \frac{2(2x-5) - 3(x-3)}{(x-3)(2x-5)}$ oe
		$\frac{2x+5}{(5x+7)(x-3)}$			M1 $\frac{(2x+5)(2x-5)}{(5x+7)(x-1)} \times \frac{x-1}{(x-3)(2x-5)}$
			$\frac{2x+5}{(5x+7)(x-3)}$		oe may be partially simplifiedA1Denominator may be expanded eg $2x+5$
			(3x+1)(x-3)		$\overline{5x^2 - 8x - 21}$ isw for incorrect denominator expansion
					Total 4 marks

Question	Working	Answer	Mark	Notes
23	A A		5	M1 Correct diagram (only points needed, condone missing vector labels) OR for
				finding \overrightarrow{AB} or \overrightarrow{BA} - may be seen as part of later working
	$\overrightarrow{AB} = \mathbf{b} - \mathbf{a} \text{ or } \overrightarrow{BA} = \mathbf{a} - \mathbf{b}$			
	$\overline{AD} = \frac{3}{4} (\mathbf{b} - \mathbf{a}) \text{ or } \overline{DA} = \frac{3}{4} (\mathbf{a} - \mathbf{b})$			M1 method to find \overrightarrow{AD} or \overrightarrow{DA} or \overrightarrow{DB} or \overrightarrow{BD} - may be seen as part of later working
	or $\overrightarrow{DB} = \frac{1}{4} (\mathbf{b} - \mathbf{a})$ or $\overrightarrow{BD} = \frac{1}{4} (\mathbf{a} - \mathbf{b})$			
	$\overline{CD} = \frac{1}{2}\mathbf{a} + \frac{3}{4}(\mathbf{b} - \mathbf{a}) (= \frac{3}{4}\mathbf{b} - \frac{1}{4}\mathbf{a})$			M1 oe, method to find \overrightarrow{CD} or \overrightarrow{DE} or \overrightarrow{CE}
	or $\overrightarrow{DE} = \frac{1}{4} (\mathbf{b} - \mathbf{a}) + \frac{1}{2} \mathbf{b} (= \frac{3}{4} \mathbf{b} - \frac{1}{4} \mathbf{a})$			
	or $\overrightarrow{CE} = -\frac{1}{2}a + b + \frac{1}{2}b (=\frac{3}{2}b - \frac{1}{2}a)$			
				M1 A correct vector expression in terms of a and b for two of \overrightarrow{CD} , \overrightarrow{DE} , \overrightarrow{CE}
		Correct simplified vectors for two of		A1 A correct conclusion eg
		$\overrightarrow{CD}, \overrightarrow{DE}, \overrightarrow{CE}$ with a correct		\overrightarrow{CD} = \overrightarrow{DE} so <i>CDE</i> is a straight line
		explanation		\overrightarrow{CE} = 2 \overrightarrow{CD} so <i>CDE</i> is a straight line
				\overrightarrow{CE} = 2 \overrightarrow{DE} so CDE is a straight line
				Total 5 marks

Ques	stion	Working	Answer	Mark	Notes
24	(a)			2	M1 For $11 - (x + q)^2$ or $p - (x + 2)^2$
			$11 - (x + 2)^2$		A1 fully correct, accept $p = 11, q = 2$
	(b)	$(y + 3 + 2)^2 = 11$ or $11 - (y + 3 + 2)^2$		3	M1 substituting $x = y + 3$ into their $p - (x + q)^2$
		$y + 3 + 2 = \pm \sqrt{11}$		-	M1
			$-5 \pm \sqrt{11}$		A1 Both answers correct, ft their answer from (a) eg $-(3 + "q") \pm \sqrt{"p"}$
	ALT (b)	Alternative scheme			M2 for $-y^2 - 10y - 14 = 0$ or $y^2 + 10y + 14 = 0$
			$-5 \pm \sqrt{11}$		A1 cao, both values correct
	(c)		(-1, 3)	1	B1 cao
					Total 6 marks

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom