

]Mark Scheme (Results)

January 2019

Pearson Edexcel International GCSE In Mathematics A (4MA1) Higher Tier Paper 1HR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2019
Publications Code 4MA1_1HR_1901_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
 - Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- M marks: method marks
- A marks: accuracy marks
- o B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- ft follow through
- isw ignore subsequent working
- o SC special case
- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o eeoo each error or omission

No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score
no marks.

With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct. It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

 $Apart\ from\ questions\ 6,\ 8,\ 13b\ and\ 24\ (where\ the\ mark\ scheme\ states\ otherwise)\ the\ correct\ answer,\ unless\ clearly\ obtained\ from\ an$

incorrect method, should be taken to imply a correct method.

	Wanking	A	Monle		Notes
Question	Working	Answer	Mark		Notes
1	$\frac{5}{3} + \frac{11}{4}$		3	M1	converts to improper fractions
	$\frac{20}{12} + \frac{33}{12}$			M1	converts to fractions with the same common denominator
	$\frac{53}{12} = 4\frac{5}{12}$	Shown		A1	Dep on M2
	Alternative method $\frac{2}{3} + \frac{3}{4} = \frac{8}{12} + \frac{9}{12}$			M1	correct method to add proper fractions
	$\frac{17}{12} = 1\frac{5}{12}$			M1	
	$1\frac{5}{12} + 1 + 2 = 4\frac{5}{12}$	Shown		A1	Dep on M2

Question	Working	Answer	Mark		Notes
2	$\frac{3}{4} \times 60 \ (=45) \text{ or } \frac{1}{4} \times 60 (=15) \text{ OR } \frac{3}{4} \times \frac{3}{5} \left(= \frac{9}{20} \right)$	13 20	4	M1	
	$\frac{3}{5}$ × "45" (= 27) or $\frac{4}{5}$ × "15" (= 12) OR			M1	
	$\frac{1}{4} \times \frac{4}{5} \left(= \frac{4}{20} \right)$				
	$\frac{"27" + "12"}{60} \mathbf{OR} "\frac{9}{20}" + "\frac{4}{20}"$			M1	For a complete method
				A1	oe
3	$14^2 - 10^2 (= 96)$	11	4	M1	
	"96"+ 5 ² (= 121)			M1	
	√"121"			M1	
				A1	
4	(a =) 40 - 14 (=26)	26	3	M1	Method to find a
	e.g. $\frac{"26"+b}{2} = 30$ or $30 + (30 - "26")$	34		M1	Method to find b
				A1	

Working	Answer	Mark		Notes
$30.5 \div 8 (= 3.8125)$ OR $60 \div 8 (= 7.5)$	228.75	3	M1	M2 for $30.5 \div \frac{8}{60}$ oe
"3.8125" \times 60 OR 30.5 \times "7.5"			M1	
			A1	accept 229, 228.8
3x + 10 = x + 52	34	4	M1	for equating the expressions for angle P and angle Q
3x - x = 52 - 10 or $2x = 42$ or $x = 21$			M1	for isolating the terms in x
$y = 180 - 2 \times ("21" + 52)$ or			M1	for a complete method
$y = 180 - 2 \times (3 \times 21 + 10)$ or $y = 180 - ("21" + 52) - (3 \times "21" + 10)$				
			A1	dep on M2
eg $\frac{187}{147}$ or $\frac{147}{187}$ or $\frac{90}{187}$ or $\frac{187}{90}$	71	3	M1	for an appropriate scale factor, candidates may work in either cm or m
eg 90÷ $\frac{187}{147}$ or 90× $\frac{147}{187}$ or 147× $\frac{90}{187}$ or 147÷			M1	for a complete method, candidates may work in either cm or m
$\frac{187}{90}$			A1	70.7 – 71
	30.5 ÷ 8 (= 3.8125) OR 60 ÷ 8 (= 7.5) "3.8125" × 60 OR 30.5 × "7.5" $3x + 10 = x + 52$ $3x - x = 52 - 10 \text{ or } 2x = 42 \text{ or } x = 21$ $y = 180 - 2 \times ("21" + 52) \text{ or }$ $y = 180 - 2 \times (3 \times "21" + 10) \text{ or }$ $y = 180 - ("21" + 52) - (3 \times "21" + 10)$ $eg \frac{187}{147} \text{ or } \frac{147}{187} \text{ or } \frac{90}{187} \text{ or } \frac{187}{90}$ $eg 90 \div \frac{187}{147} \text{ or } 90 \times \frac{147}{187} \text{ or } 147 \times \frac{90}{187} \text{ or } 147 \div \frac{187}{187}$	30.5 ÷ 8 (= 3.8125) OR 60 ÷ 8 (= 7.5) 228.75 "3.8125" × 60 OR 30.5 × "7.5" 34 3 $x - x = 52 - 10$ or 2 $x = 42$ or $x = 21$ $y = 180 - 2 \times ("21" + 52)$ or $y = 180 - 2 \times (3 \times "21" + 10)$ or $y = 180 - ("21" + 52) - (3 \times "21" + 10)$ eg $\frac{187}{147}$ or $\frac{147}{187}$ or $\frac{90}{187}$ or $\frac{187}{90}$ eg 90 ÷ $\frac{187}{147}$ or 90× $\frac{147}{187}$ or 147× $\frac{90}{187}$ or 147÷ $\frac{187}{187}$	30.5 ÷ 8 (= 3.8125) OR 60 ÷ 8 (= 7.5) "3.8125" × 60 OR 30.5 × "7.5" 34 3 $x + 10 = x + 52$ 34 3 $x - x = 52 - 10$ or $2x = 42$ or $x = 21$ $y = 180 - 2 \times ("21" + 52)$ or $y = 180 - 2 \times (3 \times "21" + 10)$ or $y = 180 - ("21" + 52) - (3 \times "21" + 10)$ eg $\frac{187}{147}$ or $\frac{147}{187}$ or $\frac{90}{187}$ or $\frac{187}{90}$ eg $90 \div \frac{187}{147}$ or $90 \times \frac{147}{187}$ or $147 \times \frac{90}{187}$ or $147 \div \frac{187}{187}$	30.5 ÷ 8 (= 3.8125) OR 60 ÷ 8 (= 7.5) 228.75 3 M1 "3.8125" × 60 OR 30.5 × "7.5" M1 A1 $3x + 10 = x + 52$ 34 4 M1 $3x - x = 52 - 10 \text{ or } 2x = 42 \text{ or } x = 21$ $y = 180 - 2 \times ("21" + 52) \text{ or } y = 180 - ("21" + 52) - (3 \times "21" + 10)$ A1 $eg \frac{187}{147} \text{ or } \frac{147}{187} \text{ or } \frac{90}{187} \text{ or } \frac{187}{90}$ 71 3 M1 $eg 90 \div \frac{187}{147} \text{ or } 90 \times \frac{147}{187} \text{ or } 147 \times \frac{90}{187} \text{ or } 147 \div \frac{187}{90}$ M1 M1 M1 M1

Question	Working	Answer	Mark	Notes
8	eg $8x + 4y = 18 +$ or $4x + 2y = 9 -$ x - 4y = 9 $4x - 16y = 36or 4(9 + 4y) + 2y = 9$	x = 3, $y = -1.5$	3	
	eg $4 \times "3" + 2y = 9$ or $4x + 2 \times "-1.5" = 9$ or $x = 9 + 4 \times "-1.5"$			M1 (dep) correct method to find second variable using their value from a correct method to find first variable or for repeating above method to find second variable A1 oe, dep first M1
9 (a)		4.8×10^{11}	1	B1
(b)		$2^{14} \times 3 \times 5^{10}$	3	B3 for the correct answer B2 for an answer in the form 2 ^m ×3×5 ⁿ , where m and n are positive integers B1 for at least 2 correct steps in repeated prime factorisation (including tree diagram)
(c)		29 296 875	1	B1 Accept 3×5^{10} , 2.9296875×10^7

Question	Working	Answer	Mark	Notes
10	$\pi \times \left(\frac{12}{2}\right)^2$ (=113) or $\pi \times \left(\frac{12}{2} - 2\right)^2$ (=	10π	3	M1
	50.2) or $\pi \times \left(\frac{12}{2}\right)^2 \div 2 \ (=56.5)$			
	or $\pi \times \left(\frac{12}{2} - 2\right)^2 \div 2 \ (= 25.1)$			
	$eg (\pi \times 6^2 - \pi \times 4^2) \div 2 \text{ oe}$			M1 for a complete method
				A1

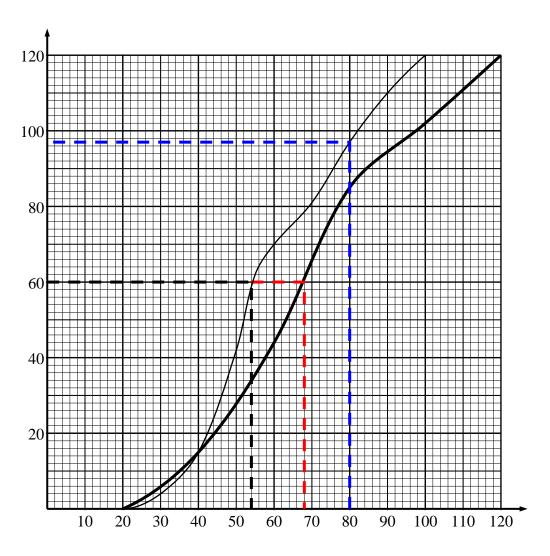
Question	Working	Answer	Mark		Notes
11	$12 \times 5.5 (= 66)$	4.2	3	M1	
	"66"+18 20			M1	for a complete method
				A1	
12 (a)		$\frac{n}{2n-1}$	2	M1	for $2n \pm k$ oe as the denominator
				A1	oe
(b)	$(2n-1)^2 = 4n^2 - 4n + 1$	Proved	3	M1	or $(2n + 1)^2 = 4n^2 + 4n + 1$ ft on $2n \pm k$ (k non zero)
	$4(n^2 - n) + 1$ or $\frac{4n^2 - 4n + 1}{4} = n^2 - n + \frac{1}{4}$			M1	or $4(n^2 + n) + 1$ or $\frac{4n^2 + 4n + 1}{4} = n^2 + n + \frac{1}{4}$
				A1	Conclusion

Questi	on	Working	Answer	Mark		Notes
13 (8	a)		$3x^2 - 2x - 8$	2	B2	(B1 for at least 1 correct non zero term)
(t	b)	$"3x^2 - 2x - 8" = 0$	$-\frac{4}{3}$, 2	3	M1	Dep on at least B1, ft on M marks only dep on $\frac{dy}{dx}$ being a 3 term quadratic
		(3x+4)(x-2) (=0)			M1	dx
		or				
		$x = \frac{2 \pm \sqrt{100}}{2 \times 3}$ or $x = \frac{2 \pm \sqrt{(-2)^2 - 4 \times 3 \times (-8)}}{2 \times 3}$				
					A1	(dep 2nd M1)
(0	c)	At $x = 2$, $y = 2^3 - 2^2 - 8 \times 2 + 12 (= 0)$ or at $x = -\frac{4}{3}$,	Shown	2	M1	Substitutes at least one of $-\frac{4}{3}$ or 2 or their
		$y = \left(-\frac{4}{3}\right)^3 - \left(-\frac{4}{3}\right)^2 - 8 \times \left(-\frac{4}{3}\right) + 12$ $\left(=\frac{500}{27}\right)$				answer from (b) into $(y =)x^3 - x^2 - 8x + 12$
					A1	must show that (2,0) is a turning point on the curve and give concluding statement

Question	Working	Answer	Mark		Notes
14 (a)		97	1	B1	96 - 98
(b)		Correct graph	2	M1	for at least 4 points plotted correctly at end of interval or for all 6 points plotted consistently within each interval at the correct height
				A1	accept curve or line segments accept curve that is not joined to (0, 0)
(c)		14	2	M1	A line drawn at CF = 60 to meet at least one curve or sight of "55" or "69"
				A1	13 - 15 ft candidate's CFD

Ques	stion	Working	Answer	Mark		Notes
15	(a)		$81x^8y^{20}$	2		(B1 two terms correct in a product of 3 terms)
	(b)	$4n(n^2 + 2n - 15)$ or $(4n^2 - 12n)(n + 5)$ or $(4n^2 + 20n)(n - 3)$	$4n^3 + 8n^2 - 60n$	2	ł	For a correct partial expansion (may be unsimplified e.g $4n(n^2 + 5n - 3n - 15)$)
					A1	
	(c)		(2c-3d)(2c+3d)	1	B1	
	(d)	$\frac{(4-x)(3-x)}{x(4-x)}$ or $\frac{(x-4)(x-3)}{x(4-x)}$	$\frac{3-x}{x}$	3		for either numerator or denominator factorised correctly
						for both numerator and denominator factorised correctly
					A1 (pe

Question	Working	Answer	Mark	Notes
16 (a)	$\frac{2}{12} \times \frac{1}{11}$	$\frac{1}{66}$	2	M1
(b)	Any two of $\frac{7}{12} \times \frac{3}{11} \left(= \frac{21}{132} \right)$ or $\frac{7}{12} \times \frac{2}{11} \left(= \frac{14}{132} \right)$ or $\frac{3}{12} \times \frac{2}{11}$ $\left(= \frac{6}{132} \right)$	41 66	3	A1 M1 for any two correct
				M1 for a complete method
	Alternative method	4.1		A1 oe
	$\frac{7}{12} \times \frac{6}{11} \left(= \frac{42}{132} \right) $ and $\frac{3}{12} \times \frac{2}{11} \left(= \frac{6}{132} \right)$	41 66		M1 both correct
	$1 - \frac{2}{12} \times \frac{1}{11} - \frac{7}{12} \times \frac{6}{11} - \frac{3}{12} \times \frac{2}{11}$			M1 for a complete method
				SC B2 for an answer of $\frac{41}{72}$ oe


Que	estion	Working	Answer	Mark		Notes
17	(a)	$2\pi r^2 + 2\pi r \times 2r$	$6r^2$	2	M1 A1	
	(b)	S.A. $6\pi r^2$: $4\pi r^2 = 3:2$	Shown	3	M1	ft their answer from (a), must be in terms of r . Ratios could be seen as fractions throughout eg $\frac{3}{2}$
		$V_c: V_s = 2\pi r^3: \frac{4}{3} \pi r^3$			M1	
		$= 3 \times 2 : 4 = 3 : 2$			A1	oe eg ratios could be $\frac{3}{2}$:1

Question	Wo	rking	Answer	Mark		Notes
18	$\frac{\sqrt{8}}{\sqrt{8}-2} \times \frac{\sqrt{8}+2}{\sqrt{8}+2}$		Shown	3	M1	or $\frac{2\sqrt{2}}{2\sqrt{2}-2}$ or $\frac{\sqrt{2}}{\sqrt{2}-1}$
	$\frac{\sqrt{8}(\sqrt{8}+2)}{8-4} = \frac{8+2\sqrt{8}}{4} = \frac{8+4\sqrt{2}}{4}$				M1	or $\frac{\sqrt{2}}{\sqrt{2}-1} \times \frac{\sqrt{2}+1}{\sqrt{2}+1}$
	$=2+\sqrt{2}$				A1	(dep on M2) Conclusion - need not state the value of n
19	Angle $BCE = 73^{\circ}$	Angle $BDE = 73^{\circ}$	34	5	M1	angles may be written on the diagram
	Angle <i>DEB</i> = 73° and Angle <i>DCB</i> = 180–73 (=107°)	Angle $DEB = 73^{\circ}$ and Angle $DBE = 180-73\times2 \ (=34^{\circ})$			M1	
	Angle $DCE = 34^{\circ}$				A1	
	eg <u>Alternate segment</u> th Opposite angles of a <u>cy</u> 180° <u>Alternate angles</u> are eq Angles in the <u>Same seg</u> <u>Angles</u> in a <u>triangle</u> sur	clic quadrilateral sum to ual ment are equal			B2	for a full set of reasons relevant to their method (B1 for at least one relevant circle theorem)

Question	Working	Answer	Mark	Notes
20	Let N be the midpoint of BC	41.8	4	B1 for recognising that required angle is <i>MAN</i> (could be marked on a diagram)
	Let sides of cube have length $2a$ cm $AN^2 = 4a^2 + a^2 (= 5a^2) \text{ or } AM^2 = 4a^2 + a^2 + 4a^2 (= 9a^2)$			M1 any $a > 0$ (a could be a number or a letter)
	$\operatorname{eg tan} MAN = \frac{2a}{\sqrt{"5a^2"}} \text{ or } \sin MAN = \frac{2a}{\sqrt{"9a^2"}}$			M1 correct trig statement for angle MAN , any $a > 0$ (a could be a number or a letter)
				A1 41.8 - 41.82
21	$x^2 = 5^2 + y^2 - 2 \times 5 \times y \cos 60^\circ$	20	5	M1 recognising need for the cosine rule
	$(y-1)^2 = 5^2 + y^2 - 5y$ or $x^2 = 5^2 + (x+1)^2 - 5x - 5$			M1
	$y^{2} - 2y + 1 = 25 + y^{2} - 5y \text{ or}$ $x^{2} = 5^{2} + x^{2} + 2x + 1 - 5x - 5$			M1 for expansion of $(y-1)^2$ or $(x+1)^2$ in a correct equation
	5y - 2y = 25 - 1 or $y = 8$ or $3x = 21$ or $x = 7$			M1 for correct linear equation with correct isolation of terms
				A1

Question	Working	Answer	Mark	Notes
22	$\overrightarrow{eg} \overrightarrow{EX} = \overrightarrow{ED} + \overrightarrow{DC} + \overrightarrow{CX}$ or		4	M1 a correct statement for \overrightarrow{EX}
	$\overrightarrow{EX} = \overrightarrow{EF} + \overrightarrow{FA} + \overrightarrow{AX}$			
	$\overrightarrow{DC} = -\mathbf{b} + \mathbf{a} \text{ or } \overrightarrow{CX} = -\mathbf{b} + \mathbf{a} \text{ or } \overrightarrow{FA} = -\mathbf{b} +$			M1
	a			
	$\overrightarrow{EX} = \mathbf{a} + 2(-\mathbf{b} + \mathbf{a})$			M1 for a complete method which gives a correct
				but unsimplified expression for EX
		$3\mathbf{a} - 2\mathbf{b}$		A1

Qu	estion	Working	Answer	Mark		Notes
23	(a)	$y = \frac{\sqrt{x^2 + k^2}}{x}, x^2 y^2 = x^2 + k^2 x^2 (y^2 - 1) = k^2$		3	M1	for squaring and rearranging correctly to the form $x^2(y^2-1) = k^2$
		$\frac{k}{\sqrt{p^2 - 1}} = k$			M1	(dep) for " $f^{-1}(p)$ " = k
			$\sqrt{2}$		A1	
		Alternative method			M1	
		p = f(k)			IVI I	
		$p = \frac{\sqrt{k^2 + k^2}}{k}$			M1	
			$\sqrt{2}$		A1	
	(b)	$(\operatorname{gf}(a) =) \left(\frac{\sqrt{a^2 + k^2}}{a}\right)^2 \text{ or } (\operatorname{gf}(x) =) \left(\frac{\sqrt{x^2 + k^2}}{x}\right)^2$		3	M1	
		$ka^2 - a^2 = k^2$			M1	(dep) for rearranging gf = k and isolating correctly the terms in a^2
			$\frac{k}{\sqrt{k-1}}$		A1	oe eg $\sqrt{\frac{k^2}{k-1}}$

www.xtrapapers.com