

Mark Scheme (Results)

June 2011

International GCSE Mathematics (4MB0) Paper 02 Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011
Publications Code UG028417

All the material in this publication is copyright © Edexcel Ltd 2011

4MB0 Summer 2011 - Paper 2

Question number		Scheme	Ma	rks	
1.	(a)	2500/625	M1	N3	
		4 hrs	A1	2	
	(b)	(2500 + 2500)/("4" + "3.5")	M1		
		667 km/h	A1 ft	2	4
2.	(a)	factor of x	M1		
		Attempt to factorise $x^2 - 5x + 6$ or orig. cubic	M1		
		x(x-3)(x-2)	A1	3	
	(b) linear	attempt to factorise $2x^2 + 2x - 24$ into two terms	M1		
		One pair of factors cancelled	M1 dep		
		$\frac{x(x-2)}{2(x+4)}$ OR $\frac{x^2-2x}{2x+8}$	A1	3	6

Question				
number	Scheme	Ма	rks	
3.	Note: First three marks for angles, final mark reasoning Method 1: (using angle at centre)			
	$\angle AOC(\text{reflex}) = 236^{\circ} (\angle \text{ at a point}) \text{ or}$			
	$\angle ADC$ = 62° (\angle at centre)	B1		
	$\angle ABC = 118^{\circ}$ (\angle at centre/opp angles cyclic quad)	B1ft		
	$\angle BCO = 62^{\circ} (\angle \text{ between // lines})$	B1ft		
	at least two valid reasons consistent with their	B1	4	
	Method 2: (using isosceles triangles)	D1		
	$\angle CAO$ (or $\angle ACO$ or $\angle BAC$) = 28°	B1		
	$\angle ABO$ (or $\angle BOC$) = 56°	B1 ft		
	$\angle BCO = 62^{\circ}$	B1 ft	4	
	at least two valid reasons consistent with their ∠ (isosceles triangle, alt angles between // lines)	B1	4	4
4.	height of cone = $\sqrt{(39^2 - 15^2)}$	M1		
	= 36 cm	A1		
	volume = $\frac{1}{3}\pi$."36".15 ² + $\frac{2}{3}\pi$ 15 ³			
	either volume correctly stated and with values substituted	M1		
	2 nd volume correctly stated with values substituted and added	M1 dep		
	Conclusion	A1	5	5

Question number		Scheme	Mai	-kc	
5.	(a)	35 - 27, 8	M1, A1	2	
	(b)	17 - c's(8), 9	M1, A1 ft	2	
		SC: $27 - (x + y)$ M1			
	(c)	3y = 35 - c's(a) - c's(b) (o.e.)	M1		
		y = 6, x = 12	A1, A1	3	7
6.	(a)	trapezium B	B2(-1ee)	2	
	(b)	trapezium C	B2(-1ee) ft	2	
	(c)	trapezium D			
	n aint	A rotation of 90° anticlockwise about any	M1		
	point		A1	2	
		Correctly placed trapezium (cao)	M1, A1	2	8
	(d)	reflection, $y = -x$			
7.	(a)	(i) $\frac{1}{(x+2)^2-9}$	M1		
		$\frac{1}{x^2 + 4x - 5}$ or $\frac{1}{(x+5)(x-1)}$	A1		
		(ii) $y(x+23) = 1$ OR $x+23 = 1/y$	M1		
		$\frac{1-23x}{x}$ OR $\frac{1}{x}$ - 23	A1	4	
	(b)	$x + 23 = \text{``}x^2 + 4x - 5\text{''}$	M1		
		$x^2 + 3x - 28 (= 0)$	A1		
		attempt to factorise their trinomial quadratic	M1		
		OR correct substitution into a correctly quoted formula			
		-7, 4	A1, A1	5	9

Question number		Scheme	Ма	rks	
8.		Accept fractional or percentage equivalents throughout.			
	(a)	0.25 (o.e.)	B1	1	
	(b)	for each correct pair	B1ft,B1,B1	3	
	(c)	(i) "0.75" x 0.8, 0.6 (3/5)	M1, A1 ft		
		(ii) "0.25" x "0.9"	M1		
		"0.6" + "0.25" x "0.9"	M1		
		0.83 (or better) (33/40)	A1	5	
	(d)	any probability ÷ ("0.825")	M1		
		"0.6"/"0.825"	M1		
		0.73 (or better) (8/11)	A1	3	12

Question	Scheme	Marks		
number 9.	(a) (i) $\frac{1}{2}$ a (ii) b - a	B1, B1	2	
	(b) $\mathbf{a} + \frac{1}{3}("\mathbf{b} - \mathbf{a}"), \frac{1}{3}\mathbf{b} + \frac{2}{3}\mathbf{a}$ (o.e.)	M1, A1	2	
	(c) $-\frac{1}{2}\mathbf{a} + \mathbf{b} + \frac{1}{3}(\mathbf{a} - \mathbf{b})$, $\frac{2}{3}\mathbf{b} - \frac{1}{6}\mathbf{a}$ (o.e.)	M1, A1	2	
	(d) $\lambda("\frac{1}{3}\mathbf{b} + \frac{2}{3}\mathbf{a"})$	B1ft	1	
	(e) $\frac{1}{2}a'' + \mu(\frac{2}{3}b - \frac{1}{6}a'')$	M1		
	Correct expression (unsimplified)	A1	2	
	(f) Attempt at equating either coefficients of a or coefficients of b .	M1		
	One correct equation: $\frac{1}{2} - \frac{1}{6}\mu = \frac{2}{3}\lambda$ or $\frac{1}{3}\lambda = \frac{2}{3}\mu$	A1		
	$\mu = 1/3, \lambda = 2/3$	A1, A1	4	13

Question number					
10.	(a)	$2x^2$ or $4xy$, $(S=) 2x^2 + 4xy$	B1, B1	2	
	(b)	$y = \frac{50 - 2x^2}{4x}$ (o.e.)	B1	1	
	(c)	$\frac{50-2x^2}{4x}.x^2 + \text{conclusion}$	В1	1	
	(d)	one term correctly differentiated	M1		
		$\frac{25}{2} - \frac{3x^2}{2}$	A1		
		$c's\left(\frac{25}{2} - \frac{3x^2}{2}\right) = 0$	M1 dep		
		2.89	A1	4	
	(e)	23.4, 24	B1, B1	2	
	square)	graph penalties (-1) straight line segments each point missed (± ½ small square) each missed segment each point not plotted each point incorrectly plotted (± ½ small) tramlines very poor curve i.e. line too thick	В3	3	
	(g) graph	line drawn or two points marked on their consistent with the line drawn 1.8 or 1.9, 3.8 SC: No indication on the graph of any line or points identified but both points correct then A1, A0	M1 A1ft, A1ft	3	16

Question number		Scheme	Marks		
11.	(a)	$(AC^2 =)$ 54 ² + 35 ² - 2 x 54 x 35 x cos 100°	M1		
		2916 + 1225 + 656.4 (o.e.)	M1 dep		
		69.3 m	A1	3	
	(b)	Use of sine rule with correct values substituted	M1		
		$\sin \angle CAB = \frac{35 \times \sin 100}{"69.3"}$	M1 dep		
		29.8°/29.9°	A1	3	
	(c)	$DB/54 = \sin("29.8")$	M1		
		26.8 m/26.9 m	A1 ft	2	
	(d)	$AD/54 = \cos("29.8")$	M1		
		46.9 m (awrt)	A1		
		"69.3" – "46.9"	B1 ft		
		Seeing "26.8"/2	B1 ft		
		$\sqrt{(("22.4")^2 + ("13.4")^2)}$	M1		
		26.1/26.2 m	A1	6	
	(e)	h/ ("26.1") = tan 40	M1		
		21.9 m (Accept 22 or 22.0 m)	A1ft	2	16

www.xtrapapers.com

Further copies of this publication are available from International Regional Offices at www.edexcel.com/international

For more information on Edexcel qualifications, please visit $\underline{www.edexcel.com}$

Alternatively, you can contact Customer Services at www.edexcel.com/ask or on + 44 1204 770 696

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE