

Mark Scheme (Results)

Summer 2013

International GCSE Mathematics (4MB0) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UG037229
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded.
- Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
- Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o awrt answers which round to....
- cao correct answer only
- ft follow through
- isw ignore subsequent working
- SC special case
- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o eeoo each error or omission

No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

International GCSE Maths Summer 2013 - Paper 01 Mark Scheme

Question Number	Working	Notes		Mark
1	20 - (9.95 + 0.65 + 0.45 + 5x0.15)	M1		
	£ 8.20	A1	2	2

Question Number	Working	Notes		Mark
2	360 – (216+96)	M1		
	48	A1	2	2

Question Number	Working	Notes		Mark
3	$\frac{18}{450} \times 100$	M1		
	4	A1	2	2

Question Number	Working	Notes		Mark
4	(3, 4) (accept $x = 3, y = 4$)	M1		
	£ 91.30	A1	2	2
4	(-1,-2) or $x=-1, y=-2$ would score B0, B1		•	
Special				
Case				

Question	Working	Notes		Mark
Number				
5(a)	5	B1	1	1
5(b)	4	B1	1	1

Question	Working	Notes		Mark
Number				
6	a=6, b=0	B1, B1	2	2
6	SC(i): a=0, b=6 would score B0, B1			
Special Case	SC(ii): a=0, b=12 would score B0, B1			
	NB: Must have <u>both</u> values for a one-mark award for a special case			

Question Number	Working	Notes		Mark
7	$x > \frac{-12-13}{3}$ (o.e.) Note: $-8.33/-8.34$ or better = M1	M1		
	-8 Note: Accept equivalent integer notation	A1	2	2

Question Number	Working	Notes		Mark
8	$2(-3)^3 + (-3)^2 + k(-3) + 6 = 0$	M1		
	k = -13	A1	2	2
	Note: $k \neq -13$ and missing brackets in first line = M0 , A0			
	Note: $k = -13$ and no working shown = M1, A1			

Question Number	Working	Notes		Mark
9	$\begin{pmatrix} 14 \\ 8 \\ 2 \end{pmatrix}$			
	At least ONE correct value or correct statement seen i.e. 14 or $3\times3+2\times2+1\times1$	M1		
	All THREE correct values in a 3 x 1 matrix	A1	2	2

Question Number	Working	Notes		Mark
10	common denominator of either			
	$(x^2-1)(x+1)$ or $(x-1)(x+1)$ (o.e.)	M1		
	Note: Condone missing final brackets			
	numerator of either			
	$x(x+1)-(x^2-1) \text{ or } x-(x-1)$ (o.e.)	A1		
	Note: A1 available following a single fraction representation with one common denominator			
	$\frac{1}{(x-1)(x+1)}$ (o.e.)	A1	3	3
	<i>Note:</i> (o.e.) is $\frac{1}{x^2-1}$			
	Note: Correct answer only seen, award full marks			
	Note: Do not isw			

Question Number	Working	Notes		Mark
11	seeing either $10\sqrt{3}$ or $2\times5\sqrt{3}$ or $2\sqrt{3}$	M1		
	$\frac{10\sqrt{3} - 4\sqrt{3}}{2\sqrt{3}}$	M1dep		
	3	A1	3	3
	Note: Final A mark dependent on at least 1 st M mark being awarded			
	Alternative Method:			
	$\frac{2\sqrt{75}\sqrt{12}-4\sqrt{3}\sqrt{12}}{\sqrt{12}\sqrt{12}}$	M1		
	$\frac{2\sqrt{900}-4\sqrt{36}}{12}$	M1dep		
	3	A1	3	3

Question Number	Working	Notes		Mark
12(a)	3, 5, 7, 11	B1	1	
12(b)	1, 2, 3, 5, 7, 9, 11	B1	1	
	Note: In parts (a) and (b), commas not needed, accept numbers in any order, allow repetitions			
12(c)	4	B1	1	3

Question Number	Working	Notes		Mark
13	$\begin{pmatrix} 28 \\ 4 \end{pmatrix}$ and $\begin{pmatrix} 3 \\ -6 \end{pmatrix}$	B1		
	$ \begin{pmatrix} 28 \\ 4 \end{pmatrix} - \begin{pmatrix} 3 \\ -6 \end{pmatrix} $	M1		
	$\binom{5}{2}$	A1	3	3
	Alternative Method $5x+3=28$ and $5x-6=4$	B1		
	Two values: 25 and 10	M1		
	$\binom{5}{2}$	A1	3	3
	Note: Correct answer only seen, award full marks			

Question Number	Working	Notes		Mark
14	$\frac{12}{2 \times 20 \times \pi} = \frac{x}{360}$ (o.e.)	M1		
	Note: Any correct equation in x			
	$x = \frac{12 \times 360}{2 \times 20 \times \pi}$	M1dep		
	Note: x as the subject			
	34.4° (awrt)	A1	3	3
	Alternative Method (if no variable stated)			
	12/circumference (0.0954)			
	or circumference/12 (10.47)	M1		
	0.0954x360 or 360/10.47	M1dep		
	34.4° (awrt)	A1	3	3
	Alternative: Use of radians			
	12/20 = 0.6 on its own earns no marks			
	An answer of 0.6 radians earns full marks			
	Arc length = $r\theta$	M1		
	12= 20 x (or 12/20)	M1dep		
	0.6	A1		

Question Number	Working	Notes		Mark
15(a)	2x-3>0 followed by a conclusion $x>1.5$	B1	1	
	Note: Accept equating $2x-3$ to zero to find $x=1.5$ and concluding that the length cannot be zero or less than zero			
15(b)	2(2x-3)+2(3x+7) (o.e.)	M1		
	10x+8 (o.e.)	A1	2	3

Question Number	Working	Notes		Mark
16	$\left(\frac{2}{5}\right)^3$ or $\left(\frac{5}{2}\right)^3$ seen	B1		
	Note: accept ratio or decimal form			
	$\frac{500}{V} = \left(\frac{5}{2}\right)^3 \text{ (o.e.) or } \left(\frac{2}{5}\right)^3 \times 500 \text{ (o.e.)}$	M1		
	Note: For M1, accept $\frac{2}{7}$ or $\frac{5}{7}$ for $\frac{2}{5}$			
	32 (awrt)	A1	3	3
	Alternative method $\sqrt[3]{500}$ seen	B1		
	$\left(\frac{2}{5} \times \sqrt[3]{500}\right)^3$	M1		
	32 (awrt)	A1	3	3
	<i>Note: Accept 7.9 for</i> $\sqrt[3]{500}$			
	Note: For the M1 mark, accept $\frac{2}{7}$ or $\frac{5}{7}$ for $\frac{2}{5}$			

Question Number	Working	Notes		Mark
17	4.29x1000 or $\frac{4.29}{97.5}$ or 0.0975	M1		
	$\frac{4.29 \times 1000}{97.5}$ (o.e.)	M1dep		
	44	A1	3	3
	Note: for first M1, accept 97.5/1000			

Question Number	Working	Notes		Mark
18	$hg + hf = fg$ or $\frac{g+f}{fg} = \frac{1}{h}$	M1		
	h(g+f) = fg	M1dep		
	$h(g+f)=fg$ $h=\frac{fg}{g+f}$ Note: $\frac{1}{f}+\frac{1}{g}+\frac{1}{h}=0$ followed by $\frac{gh+fh-fg}{fgh}=0$ until $hg+hf=fg$ Note: No isw	A1	3	3
	Note: $\frac{1}{f} + \frac{1}{g} + \frac{1}{h} = 0$ followed by $\frac{gh + fh - fg}{fgh} = \frac{1}{gh}$	= 0 earns N	VO m	arks
	until hg + hf = fg			
	Note: No Isw Note: Answer dependent on first M mark			
	Special Case 1			
	$h = \frac{1}{\frac{1}{f} + \frac{1}{g}}$ implies M1, M0, A0			
	Special Case 2			
	$h = \frac{1}{\frac{g+f}{fg}}$ implies M1, M0, A0			

Question Number	Working	Notes		Mark
19	0.15×10^n or 10^{13} seen	B1		
	any correctly formatted standard form statement	M1		
	1.5×10^{12} (cao)	A1	3	3
	Note: Award 3 marks for correct answer seen (no isw)			

Question Number	Working	Notes		Mark
20(a)	Factors 2, 3 and 7 identified Note: Award M1 for at least TWO of the	M1		
	above seen $2^3 \times 3^2 \times 7 \text{or} 2x2x2x3x3x7$	A1	2	
20(b)	14	B1ft	1	3

Question Number	Working	Notes		Mark
21(a)	$\frac{12}{8} = \frac{AE}{6}$ or $\frac{12}{20} = \frac{AE}{AE+6}$ (o.e.)	M1		
	<i>AE</i> = 9cm	A1	2	
21(b)	$\frac{CB}{7} = \frac{20}{12}$ or $\frac{CB}{7} = \frac{"9"+6}{"9"}$ (o.e.)	M1		
	$CB = 11.7 \text{cm} \ (11\frac{2}{3}) \ \text{(awrt)}$	A1	2	4
	Note: accept 11.6 (awrt)			
	Note: Accept (o.e.) for BOTH answers (i.e. 35/3 is acceptable)			

Question Number	Working	Notes		Mark
22(a)	$\frac{x}{60} = \frac{2}{5}$ or $\frac{2}{5} \times 60$	M1		
	x = 24	A1	2	
	Note: Do not isw			
22(b)	60-"24" or $\frac{"24"+x}{60+x} = \frac{1}{2} \times "24"$	M1		
	"36"-"24" or $60-2 \times$ "24" or $\frac{1}{2} \times$ "24"	A1ft	2	4
	Note: For the A mark, the answer must be a positive integer			

Question Number	Working	Notes		Mark
23(a)	x^3-3x^2-2x+6 (allow one slip)	M1		
	If COMPLETELY correct	A1	2	
	Note: No isw (unless a transcription error)			
23(b)	One of candidate's terms correctly differentiated from part (a)	M1		
	A second term correctly differentiated from part (a)	M1dep		
	Note: To gain the method marks, terms may not be suitably/fully simplified (i.e. $3 x^{3-1}$ is fine)			
	Note: If the candidate's answer to part (a) is linear, the 2 nd M mark in part (b) is NOT available			
	Note: No method mark should be awarded for differentiating a constant			
	$3x^2 - 6x - 2$ (cao)	A1	3	5
	<i>Note: Accept</i> $6x^1$ <i>for</i> $6x$			
	Note: Any subsequent working loses the last mark (the A mark)			
	Note: Accept terms in any order			
	Note: Each term must be suitably simplified			
	Product Rule Method			
	$(x-3)2x+(x^2-2)$	M1		
	$2x^2-6x+x^2-2$	M1dep		
	$3x^2-6x-2$	A1	3	

Question	Working	Notes		Mark
Number		110100		
24	$x^2 - 6x + 4 = 11$	M1		
	$x^2 - 6x - 7 (= 0)$	A1		
	attempt to factorise trinomial quadratic	M1		
	Alternatively: Using the formula: correct substitution of candidate's coefficients into a correctly quoted formula			
	Completing the square: from candidate's coefficients, correctly reducing to $(x-a)^2 = b$			
	x=7, x=-1	A1, A1	5	5
	Note: The 2^{nd} M1 mark is independent so it can be earned for attempting to factorise/solve $x^2 - 6x + 4 (= 0)$			
	Note: 'Correct' answers following an incorrect attempt to solve the correct quadratic (even though the 2 nd M mark has been earned), loses the last two A marks			
	Note: Correct answers followed by further working should have the last A1 deducted (i.e. do NOT isw here)			

Question Number	Working	Notes		Mark
25(a)	$(r+4)^2 = r^2 + 72$ or $4(4+2r) = 72$ or			
	$4+2r=18 \text{ or } r=\sqrt{(4+r)^2-\sqrt{(72)^2}}$	В1	1	
	$4+27-18$ Of $7-\sqrt{(4+7)}-\sqrt{(72)}$			
	Note: Accept any equivalent quadratic or linear equation from above statements			
	Note: For 72 accept			
	$(\sqrt{72})^2$ or 8.48^2 or 8.49^2 or 8.485^2			
25(b)	$r^2 + 8r + 16 = r^2 + 72$ or $16 + 8r = 72$ or $4 + 2r = 18$	M1		
	Note: If part (a) is incorrect, award M1 for an attempt at solving their part (a)			
	Note: If a quadratic, see Question 24			
	Note: If linear, correctly solving candidate's equation			
	r = 7 (cao)	A1	2	
	Note: accept correct answer of $r = 7$ with no wrong working seen			
25(c)	$\sin \angle OPC = \frac{"7"}{"7"+4}$ (o.e.)	M1		
	Note: Any correct trig expression from candidate's answer to (b)			
	39.5°	A1ft	2	5
	Note: ft from a correct trig equation using candidate's answer to (b)			
	Note: awrt (3SF) a 'correct; angle from candidate's answer to (b)			

Question Number	Working			Notes		Mark
26	$\frac{58}{87}$ or $\frac{87}{58}$ or Note: At least of method	58 87	or Total = 240 ole entry implies	M1		
	Lake Superior Huron Michigan Erie Ontario	Area in km² 24 17	Angle at centre 123 88.5	A1		
	88.5			A1		
	24			A1		
	"25.5"			B1ft		
	"17"			B1ft	6	6
	Note: "25.5" is (independent o		ast column			
	Note: Accept th 89 and 26	ne following ro	unded answers:			
	Note: Final B1f	t mark is for e	ither $\frac{2}{3} \times 25.5$ (17)	or 240	-(Sur	n of
	other areas)		3			
	or					
	$\frac{2}{3}$ × "25.5" or $\frac{3}{2}$	3/2×"25.5"				
	Note: For the B "correctly"	3 marks, accep	et answers that ro	ound to 3	figur	res
	Note: Accept ro marks	ounded answei	rs to integer form	s for the	two	B1ft
	Note: 38 or 38. mark	25 is not an a	cceptable answei	for the	final E	3

Question Number	Working	Notes		Mark
27(a)	$\angle BPC = 90^{\circ}$ (\angle in a semicircle)	M1		
	Note: for reason "angle made by diameter" or "chords from diameter to circumference"			
	Note: Do not accept tangent – radius			
	$\angle PBC = 58^{\circ}$ (alt segment)	M1		
	Note: Angles can be marked on the diagram			
	$\angle PCB = 32^{\circ}$	A1	3	3
	Alternative Working 1:			
	$(\angle APB = 32^{\circ})$			
	$\angle PCB = 32^{\circ}$ (alt segment) = M1			
	Note: for reason accept "angle between a tangent and a chord" or "tangent-secant"			
	Note: Do not accept "tangent-radius"			
	$\angle PCB = 32^{\circ} = A1$			
	Alternative Working 2:			
	$\angle BPC = 90^{\circ} \ (\angle \text{ in a semicircle}) = \mathbf{M1}$			
	$(\angle APB = 32^{\circ})$			
	$\angle PCB = 32^{\circ}$ (alt segment) = M1, A1			
	Special Case: Correct answer with (or without reasons) the final A mark	scores	at le	ast
	Note to ALL above alternatives: Accept \(\triangle \)	CPCB = 32	° ma	rked
27(b)	on the diagram for final A mark. ∠PAB = 180-90-"32"-"32" (o.e.),	M1,		
27(0)	$(\angle \operatorname{sum of } \Delta)$	M1dep		
	= 26° (accept correct angle marked on diagram)	A1	3	3
	Note: A correct numerical attempt to find the required angle from candidate's figures for first M mark			

Note: No working shown and angle not 26° means 1 st M mark not earned.
Note: For reason, accept an equivalent statement involving a triangle e.g. "exterior angle of a triangle" for the M1dep mark
Special Case: Correct answer with (or without) reasons scores at least the final A mark

Question Number	Working	Notes		Mark
28(a)	A correct attempt to diff. At least one term	M1		
	2kt – 6	A1		
	"2k(1) - 6" = 0	M1dep		
	k=3	A1	4	4
	Note: $s(1) = 0$ leading to $k = 3$ earns no marks			
	Note: $k = 3$ earns full marks provided that the first M mark is earned and no wrong working is seen			
28(b)	Either $s(3) = "3"(3^2) - 6 \times 3 + 3$ (12) or $s(2) = "3"(2^2) - 6 \times 2 + 3$ (3)	M1		
	s s(3) - s(2) or $s(2) - s(3)$	M1		
	9m	A1	3	7
	Note: accept -9 for the A1 mark			

Question Number	Working	Notes		Mark
29(a)	$AE = \sqrt{30^2 - 18^2} + \text{conclusion}$	B1	1	
	Note: Sufficient to state a correct Pythagorean statement with 30 and 18 substituted + conclusion			
29(b)	$\sin \angle DAE = \frac{18}{30} \text{(o.e.)}$	M1		
	Note: A correct trig statement to find either \(\sum_{DAE}(36.9^{\circ}) \) or \(\sum_{ADE}(53.1^{\circ}) \)			
	36.9° or 53.1° Note: Accept awrt either 37° or 53°	A1		
	53.1° (cao)	A1	3	
	Note: Accept angles, marked correctly, on the diagram			
	Note: Answer only seen implies full marks			
	Note: The answer must be as seen for the final A mark.			
29(c)	$\frac{h}{25} = \cos"53.1"$			
	or			
	$\frac{18}{x} = \frac{30}{25}$	M1		
	= 15	A1		
	24+"15" (39) (awrt their 3SF answer)	A1ft	3	7
	Note: Final A1ft mark dependent on method			
	Note: If the final answer is a whole number, accept 2SF			
	Note: Beware of $DB = \sqrt{(30)^2 + (25)^2} = 39.0512$ this is not			
	incorrect but requires to be multiplied by sin (180-92.03) to gain M1, A1 then final answer is A1ft			

www.xtrapapers.com

Note: Penalise use of radians once only in		
any dependent A mark		

www.xtrapapers.com

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467
Fax 01623 450481
Email <u>publication.orders@edexcel.com</u>
Order Code UG037229 Summer 2013

For more information on Edexcel qualifications, please visit our website $\underline{www.edexcel.com}$

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

