

Mark Scheme (Results)

January 2017

Pearson Edexcel International GCSE Mathematics B (4MB0)
Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2017
Publications Code 4MB0_01_1701_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners
 must mark the first candidate in exactly the same way as they
 mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

• Types of mark

- o M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- ft follow through
- o isw ignore subsequent working
- SC special case
- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- eeoo each error or omission

No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Internationa	al GCSE Mathematics B			
Question	Working	Answer	Mark	Notes
1	$\frac{60 \times 24 \times 366}{10} \qquad \text{(o.e.)}$		2	M1
		52704		A1 Accept 52700
				Total 2 marks

Question	Working	Answer	Mark	Notes
2	Attempt to factorise a quadratic e.g.		2	M1
	$(4x + 3y) (4x \pm 3y)$ (ie any attempt giving $16x^2$ and $9y^2$ terms is acceptable)			
		(4x+3y)(4x-3y)		A1 (cao)
				Total 2 marks

Question	Working	Answer	Mark	Notes
3	Prime factors (or factor ladders/trees) of any two of 60, 84 and 120 $(60 = 2^2 \times 3 \times 5, 120 = 2^3 \times 3 \times 5, 84 = 2^2 \times 3 \times 7)$		2	M1 Allow 4 for 2 ² in the factorisations
		12		A1 SC: any multiple of 12 scores M1A0
				Total 2 marks

Question	Working	Answer	Mark	Notes
4		$2x - \frac{4}{x^3}$ OR $2x - 4x^{-3}$	2	M1 (one term correct)
				A1 (both terms correct)
				Total 2 marks

Question	Working	Answer	Mark	Notes
5	1.208×10^{14}		2	M1
	9.461×10^{12}			
		12.8 light years		A1 Accept 1.28×10
				Total 2 marks

Question	Working	Answer	Mark	Notes
6	x: y = 14: 35 and x: z = 14: 6		2	M1
	OR			
	$y x_5 7$			
	$\frac{y}{x} \times \frac{x}{z} = \frac{5}{2} \times \frac{7}{3}$			
	OR			
	$\frac{2y}{z} = \frac{7z}{2}$ (o.e.)			
	$\frac{2y}{5} = \frac{7z}{3} \text{(o.e.)}$			
		y: z = 35:6		A1 o.e.
				Total 2 marks

Question	Working	Answer	Mark	Notes
7	Volume = $\pi \times 6^2 \times 8$		2	M1
		288π		A1 cao
				Total 2 marks

Question	Working	Answer	Mark	Notes
8	76 100		2	M1
	$76 \times \frac{100}{160}$			
	100			
		47.5 mm		A1
		47.5 IIIII		
				Total 2 marks

Question	Working	Answer	Mark	Notes
9	$162n = (2n-4) \times 90$ OR Exterior angle= $180 - 162$ (= 18°)		3	M1
	$\frac{360}{18}$			M1(DEP)
		20		A1
				Total 3 marks

Question	Working	Answer	Mark	Notes
10	$\overrightarrow{BC} = \left(= \overrightarrow{BA} + \overrightarrow{AO} + \overrightarrow{OC} \right) = -\binom{3}{2} - \binom{1}{1} + \binom{5}{6}$		2	M1
		$\overrightarrow{BC} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$		A1 $\left(\frac{1}{3}\right)$ and no working seen scores M0 A0
				Total 2 marks

Question	Working	Answer	Mark	Notes
11	4×53+3×490 (=1682)		3	M1
	"1682"			M1(DEP)
	11.85			
	OD			(M1)
	OR			(1111)
	$\frac{53}{11.85}$ and $\frac{490}{11.85}$			(M1(DEP))
	$4 \times "\frac{53}{11.85}" + 3 \times "\frac{490}{11.85}"$			
		£142 (awrt)		A1
				Total 3 marks

Question	Working	Answer	Mark	Notes
12	Two of $6\sqrt{2}$, $4\sqrt{2}$ and $2\sqrt{2}$		3	B1
	Two of $6\sqrt{2}$, $4\sqrt{2}$ and $2\sqrt{2}$ $\frac{6\sqrt{2} + 4\sqrt{2}}{2\sqrt{2}}$ oe			M1
	$(OR \frac{\sqrt{8}}{\sqrt{8}} \times \frac{\sqrt{72} + \sqrt{32}}{\sqrt{8}})$			(B1)
	576 1 256			(M1)
	$OR \frac{\sqrt{2}}{\sqrt{2}} \times \frac{\sqrt{72} + \sqrt{32}}{\sqrt{8}}$			(B1)
	$ \frac{\sqrt{370 + \sqrt{236}}}{8} $ OR $\frac{\sqrt{2}}{\sqrt{2}} \times \frac{\sqrt{72} + \sqrt{32}}{\sqrt{8}}$ $ \frac{\sqrt{144} + \sqrt{64}}{\sqrt{16}} $			(M1)
	OR Dividing numerator by $\sqrt{8}$ producing one of $\sqrt{9}$ or $\sqrt{4}$)			(B1)
	$\sqrt{9} + \sqrt{4}$			(M1)
		5		A1
				Total 3 marks

Question	Working	Answer	Mark	Notes
13	$\frac{2x^{-2}y^3}{x^5y^6} $ (factor of 2)		3	M1
	$\frac{2y^3}{x^7y^6} \text{OR} \frac{2x^{-2}}{x^5y^3} \text{(oe, simplifying powers} \\ \text{of } x \text{ or } y)$			M1
		$\frac{2}{x^7y^3}$		A1 $\left(2x^{-7}y^{-3}, \frac{2x^{-7}}{y^3} \text{ and } \frac{2y^{-3}}{x^7}\right)$
				Total 3 marks

Question	Working	Answer	Mark	Notes
14	One of $15 \times \tan 20^{\circ}$ and $15 \times \tan 35^{\circ}$		3	M1
	OR			
	tan 35 – tan 20			
	$15 \times \tan 35^{\circ} - 15 \times \tan 20^{\circ}$ (oe)			M1 (DEP)
		5.04356→5.04		A1
		(awrt)		
				Total 3 marks

Question	Working		Answer	Mark	Notes
15	$100 = \frac{k}{3}$			4	M1
	7^{2}				
	k = 4900	$100 \times 7^2 = 4 \times r^2 \text{ (M1)(A1)}$			A1
	$\therefore r = \sqrt{\frac{"4900"}{4}}$				M1 (DEP)
			r = 35		A1
					Total 4 marks

Question	Working	Answer	Mark	Notes
16 a	13-1		2	M1
	15-(-1)			
		$\frac{12}{16}$, $\left(\frac{3}{4}, 0.75\right)$		A1
b	$\sqrt{\left(\left(15-\left(-1\right)\right)^{2}+\left(13-1\right)^{2}\right)}$		2	M1
	•	20		A1
				Total 4 marks

Question	Working	Answer	Mark	Notes
17 a	3(x+2) > 5(x-2)		3	M1
	(remove denominators, oe)			
	16 > 2x or $-2x > -16$ (isolate x)			M1 (DEP)
		<i>x</i> < 8		A1
_				
b	Open circle at/above/below $x = 8$ with		1	B1ft
	line drawn in the $-\infty$ direction, arrowed or			
	drawn to or beyond $x = -10$			
				/D.4.1.41
				Total 4 marks

Question	Working	Answer	Mark	Notes
18 a	d		1	B1
b	c, d, e		1	B1
С	f, g		1	B1
d	Ø		1	B1 Condone (curly) brackets
				Total 4 marks

Working	Mark	Notes
Method (A) $\angle ABC = 90^{\circ}$ (angle in a semicircle)	4	
$\therefore \angle ABD = 70^{\circ}$		B1
(∠OBA = 40° (Isosceles Δ) : ∠OBD = 30° ∴ ∠ODB = 30° (Isosceles Δ)		B1 B1 B1
(angle in a semiencie)		
$\therefore \angle ABD = 70^{\circ}$		B1
$(\angle OBA = 40^{\circ} \text{ (Isosceles } \Delta))$ and $\angle AOD = 140^{\circ} (\angle \text{ at centre}))$		
$\therefore \angle BOD = 120^{\circ} \ (\angle s \text{ at a point})$		B1
$\therefore \angle ODB = 30^{\circ} \text{ (Isosceles } \Delta \text{s)}$		B1
2 different reasons (one of "angle in a semicircle" and " \angle at centre", one of "Isosceles Δ ", " \angle s at a point", "angle in a semicircle" and "		
∠ at centre",)		B1
OR (using point E)		
Method (C) $\angle ABC = 90^{\circ}$ (angle in a semicircle)		
∴ $\angle ABD = 70^{\circ}$ $\angle OED = 110^{\circ}$ (\angle s of Δ , \angle s on line) AND $\angle EOD = 40^{\circ}$ (\angle at centre, \angle s on line)		B1 B1 B1
,		D1
		B1
	Method (A) $\angle ABC = 90^{\circ}$ (angle in a semicircle) ∴ $\angle ABD = 70^{\circ}$ ($\angle OBA = 40^{\circ}$ (Isosceles Δ)) ∴ $\angle OBD = 30^{\circ}$ ∴ $\angle ODB = 30^{\circ}$ (Isosceles Δ) 2 reasons ("angle in a semicircle", "Isosceles Δ ") OR Method (B) $\angle ABC = 90^{\circ}$ (angle in a semicircle) ∴ $\angle ABD = 70^{\circ}$ ($\angle OBA = 40^{\circ}$ (Isosceles Δ) and $\angle AOD = 140^{\circ}$ (\angle at centre)) ∴ $\angle BOD = 120^{\circ}$ (\angle s at a point) ∴ $\angle ODB = 30^{\circ}$ (Isosceles Δ s) 2 different reasons (one of "angle in a semicircle" and " \angle at centre", one of "Isosceles Δ ", " \angle s at a point", "angle in a semicircle" and " \angle at centre",) OR (using point E) Method (C) $\angle ABC = 90^{\circ}$ (angle in a semicircle) ∴ $\angle ABD = 70^{\circ}$	Method (A) $\angle ABC = 90^{\circ}$ (angle in a semicircle) ∴ $\angle ABD = 70^{\circ}$ ($\angle OBA = 40^{\circ}$ (Isosceles Δ)) ∴ $\angle OBD = 30^{\circ}$ ∴ $\angle ODB = 30^{\circ}$ (Isosceles Δ) 2 reasons ("angle in a semicircle", "Isosceles Δ ") OR Method (B) $\angle ABC = 90^{\circ}$ (angle in a semicircle) ∴ $\angle ABD = 70^{\circ}$ ($\angle OBA = 40^{\circ}$ (Isosceles Δ) and $\angle AOD = 140^{\circ}$ (\angle at centre)) ∴ $\angle BOD = 120^{\circ}$ (\angle s at a point) ∴ $\angle ODB = 30^{\circ}$ (Isosceles Δ s) 2 different reasons (one of "angle in a semicircle" and " \angle at centre", one of "Isosceles Δ ", " \angle s at a point", "angle in a semicircle" and " \angle at centre") OR (using point E) Method (C) $\angle ABC = 90^{\circ}$ (angle in a semicircle) ∴ $\angle ABD = 70^{\circ}$ $\angle OED = 110^{\circ}$ (\angle s of Δ , \angle s on line) AND $\angle EOD = 40^{\circ}$ (\angle at centre, \angle s on line) ∴ $\angle ODB = 30^{\circ}$ 2 different reasons (one of "angle in a semicircle" and " \angle at centre", one of " \angle s in Δ ", " \angle s on straight line", "angle in a semicircle" and " \angle at centre", one of " \angle s in Δ ", " \angle s on straight line", "angle in a semicircle" and " \angle

Summary of Scheme:	
$\angle ABD = 70^{\circ}$	B1
$\angle OBD = 30^{\circ} \text{ (Method A)},$ OR $\angle BOD = 120^{\circ} \text{ (Method B)}$	
OR $\angle OED = 110^{\circ}$ AND $\angle EOD = 40^{\circ}$ (Method C)	B1
Answer	B1
TWO different reasons including one relevant circle reason plus another relevant reason	B1
	Total 4 marks

NB. A fourth method:

 $\angle ABC = 90^{\circ}$ (angle in a semicircle) $\angle ACB = 50^{\circ}$ (angles in a triangle) (B1) $\angle COD = 40^{\circ}$ (\angle at the centre) and $\angle BEC(OED) = 110^{\circ}$ (reason) (B1) Answer (B1) Reasons (B1)

Reasons must be consistent with the argument

Question	Working	Answer	Mark	Notes
20	$\frac{a}{b} = \frac{1}{c^2} - \frac{1}{d^2}$ $\frac{1}{d^2} = \frac{1}{c^2} - \frac{a}{b} \text{(isolating } \frac{1}{d^2}\text{)}$		5	M1 M1(DEP)
	$\frac{1}{a^2} = \frac{b - ac^2}{a^2}$ (combining fractions)			M1(DEP)
	$d^{2} = \frac{bc^{2}}{b - ac^{2}}$ (isolating d^{2})			M1(DEP)
		$d = \sqrt{\frac{bc^2}{b - ac^2}} \text{oe}$		A1
	OR			
	$a = b \left(\frac{d^2 - c^2}{c^2 d^2} \right)$ (combining fractions) $ac^2 d^2 = bd^2 - bc^2$			M1 M1(DEP)
	$(b-ac^2)d^2 = bc^2$ (collecting terms in d^2)			M1(DEP)
	$ac^{2}d^{2} = bd^{2} - bc^{2}$ $(b - ac^{2})d^{2} = bc^{2}$ (collecting terms in d^{2}) $d^{2} = \frac{bc^{2}}{b - ac^{2}}$ (isolating d^{2}) $d = \sqrt{\frac{bc^{2}}{b - ac^{2}}}$ (oe)			M1(DEP)
	$d = \sqrt{\frac{bc^2}{b - ac^2}} \qquad \text{(oe)}$			A1

OR	
$a = \frac{b}{c^2} - \frac{b}{d^2}$	M1
$\frac{b}{d^2} = \frac{b}{c^2} - a \qquad \text{(isolating } \frac{b}{d^2}\text{)}$	M1(DEP)
$\frac{1}{d^2} = \frac{b - ac^2}{bc^2}$ (combining fractions)	M1(DEP)
$d^2 = \frac{bc^2}{b - ac^2} $ (isolating d^2)	M1(DEP)
$d = \sqrt{\frac{bc^2}{b - ac^2}} $ (oe)	A1
	Total 5 marks

Question	Working	Answer	Mark	Notes
21		$20 < t \le 25$ 30 st	udents	B1
		$55 < t \le 65$ 100 st	udents	B1ft Award B1ft if their individual number of students is incorrect but the total adds up to 30
		$25 < t \leqslant 40 \qquad 2.0 \text{ t}$	units	B1
		$40 < t \le 50$ 3.0 u	units	B1
		$55 < t \leqslant 65$ 5.0 u	units	B1ft
				Total 5 marks

Que	estion	Working	Answer	Mark		Notes
22	a		10×2^{100}	1	B1	Accept m = 10
	b	$4^{48} \left(= 2^{48} \times 2^{48} \right) = 2^{96}$		4	M1	
		$\therefore "10" \times 2^{100} = "10" \times 2^4 \times 2^{96}$			M1(DEP)	
		$= "10" \times 2^4 \times 4^{48}$ $(\mathbf{OR} \frac{"10 \times 2^{100}"}{2^{96}}$			M1(DEP)	NB: 0 marks if no correct working seen
		$OR = \frac{10 \times 2}{2^{96}}$			(M1(DEP))	
		10×2^4 (oe eg (32 + 128))			(M1(DEP)))	
			160×4 ⁴⁸ (cao)		A1ft	
						Total 5 marks

Note: 2nd Alternative

$$2^{100} = 4^{50} \text{ (M1)}$$

$$"10 \times 2^{100} " = 10 \times 4^{50} \text{ (M1 (|DEP))}$$

$$= 10 \times 4^{2} \times 4^{48} \text{ (M1(DEP))}$$

Answers of (a) 10 and (b) 160 earns at most (B0)((M1)(M1)(M1)(A1)

Question	Working	Answer	Mark	Notes
23	$2x^2-4(3x-1)=-6$		5	M1
	$2x^2 - 12x + 10 = 0 $ (o.e.)			A1
	2(x-1)(x-5)=0			M1 .
	OR $(x-1)(x-5) = 0$			
	(oe, solving trinomial quadratic)			
		1, 5		A1, A1
				Total 5 marks

Question	Working	Answer	Mark	Notes
24 a	Arc(s) of equal radii, centred <i>A</i> , drawn and intersecting <i>AB</i> at <i>X</i> and <i>AC</i> at <i>Y</i> . Arcs of equal radii, centred <i>X</i> and <i>Y</i> , drawn and intersecting at <i>Z</i> (situated in between <i>AB</i> and <i>AC</i>)		2	M1
	Line drawn from A to at least the point of intersection, Z, of the above two arcs			A1
b	Arcs, centred <i>A</i> and <i>C</i> , drawn above and below <i>AC</i> and intersecting Perpendicular bisector drawn above <i>AC</i> and intersecting <i>BC</i>		2	M1 A1
С		$\angle BCP = 37^{\circ} \rightarrow 39^{\circ}$ (awrt)	1	B1
				Total 5 marks

Questi	ion	Working	Answer	Mark	Notes
25	a		9 years	1	B1
	b		12 years	1	B1
	c	6 correct products		3	M1
		Expression fully correct			
		$(8 \times 8 + 9 \times 32 + 10 \times 7 + 11 \times 1 + 12 \times 10 + 13 \times 29 + 14 \times 10 + 15 \times 3 1115)$			M1(DEP)
		$\boxed{ 100} \equiv \boxed{100}$			
			11.15 years		A1
	•				Total 5 marks

Question	Working	Answer	Mark	Notes
26 a	$\sin 35 = \frac{BD}{7}$		2	M1
	7	BD = 4.02 (BD = 4.015)		A1
b	$\cos 35 = \frac{AD}{7}$ $(AD = 5.734)$		3	M1
	area of $\triangle ABC = \frac{1}{2} \times ("5.734"+3) \times "4.015"$			M1(DEP)
	(Area of triangle $ABD = 11.51$ Area of triangle $BDC = 6.03$)	area of $\triangle ABC = 17.53 \rightarrow 17.5$, 17.6 $(=17.555 \rightarrow 17.6 \text{ from } BD = 4.02)$		A1
				Total 5 marks

Question	Working	Answer	Mark	Notes
27 a	$f(-2) = 14 \times (-2)^3 - 9 \times (-2)^2 - 69 \times (-2) + 10$		2	M1 NB: $f(2) =scores M0A0$
		= 0		A1
b	a = 14		4	B1
	<i>c</i> = 5			B1
	2b+c = -69 OR $2a+b = -9$			M1
	(OR Long division: $14x^2 - 37x + 5$ (At least coef "14" correct) a = 14 b = -37 c = 5	b = -37		A1 (M1) (A1) (B1) (B1)
				Total 6 marks

Question	Working	Answer	Mark	Notes
28 a		$1 + \frac{1}{2x+3}$ or $\frac{2x+4}{2x+3}$	1	B1
bi	For method marks, accept the interchange of x/y x(2y+3)=2y+4 (Removing denominators)		5	M1
	2xy-2y=4-3x (gathering terms in y together) y(2x-2)=4-3x			M1(DEP) M1(DEP)
	OR 1			
	$2x+3 = \frac{1}{y-1}$ $2x = \frac{1}{y-1} - 3$			(M1)
	$2x = \frac{1}{y-1} - 3$			(M1DEP))
	$2x = \frac{1 - 3y + 3}{y - 1}$			(M1(DEP))
		$(gf)^{-1}: x \mapsto \frac{4-3x}{2x-2} (oe)$		A1
bi		(x =) 1		B1ft
				Total 6 marks