www.xtrapapers.com

Mark Scheme (Results)

Summer 2017

Pearson Edexcel International GCSE In Mathematics B (4MB0) Paper 02R

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017 Publications Code 4MB0_02R_1706_MS All the material in this publication is copyright © Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
 - M marks: method marks
 - A marks: accuracy marks
 - B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- cao correct answer only
- \circ ft follow through
- isw ignore subsequent working
- \circ SC special case
- oe or equivalent (and appropriate)
- \circ dep dependent
- indep independent
- \circ awrt answer which rounds to
- eeoo each error or omission

• No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Question	Working	Answer	Mark	Notes
1 (a)	$\frac{360}{2} \times (2+3+5)$			M1
		1800	2	A1
(b) (i)	$(y =) \frac{3}{10} \times "1800" \qquad (z =) \frac{5}{10} \times "1800" (=540) \qquad (=900)$			M1 Calculation for either y or z Not retrospective (ie only award in (b) if used in (b))
	"540"×1.25			M1 (DEP)
		675 euros		A1
(ii)	"900"×1.25×1.2			M1 (DEP)
	(=1125x1.2)	1350 dollars	5	A1
				Total 7 marks

2	(2x+3)(x+1) = (3x-5)(x+2)			M1	Any correct equation.
	$2x^{2}+3x+2x+3=3x^{2}+6x-5x-10$			M1	Correctly expand either (quadratic)
				(DEP)	side.
	$x^2 - 4x - 13(=0) $ (oe)			A1	cao
	$-(-4) + \sqrt{(-4)^2 - 4 \times 1 \times (-13)}$			M1	ft if their quadratic has three non-
	$x = \frac{(-4) \pm \sqrt{(-4)} + \sqrt{(-15)}}{2} \qquad (\text{oe},$			(INDEP)	zero terms.
	2×1				
	completing the square is " $(x-2)^2 = 17$ ")				
	$4 + \sqrt{68}$			M1	DEP on previous M1
	$x = \frac{1}{2} \frac{1}{2} \text{ or } x = 2 \pm \sqrt{17}$			(DEP)	ft for evaluating discriminant
	Z				(ft if working seen and their
					discriminant is not negative.)
		6.12	6	A1	DEP on third M1
				cao	
	NB: Some working must be seen else M0 M0				Do not award if negative value is
	A0 if answer is incorrect.				also given and not rejected.
					Total 6 marks

3	(a)		90 °	1	B1	cao
	(b)		45°	1	B1	cao
	(c) (i)		68°		B1	cao
			corresponding angles		B1	
	(ii)		$\angle CEB = 45^{\circ}$		B1	cao
			angles in same segment		B1	OR angles subtended by same arc
	(iii)		$\angle EFB = 67^{\circ}$		B1	cao
			angles in triangle =		B1	OR $\angle s$ in Δ
			180°	6		
	(d)		136°	1	B1	cao
		NB: (1) Award marks if angles seen on diagram				Total 9 marks
		(2) Reasons must be stated clearly and not to				
		be inferred from their working.				

	Penalise nc ONCE only				
4 (a)	$AB^2 = 6^2 + 9^2 - 2 \times 6 \times 9\cos 105$			M1	
	$AB^2 = 117 - 108\cos 105 \ (= 117 + 27.95 = 144.95)$			M1 (DEP)	
		12.0 cm (Accept 12)	3	A1	12.03962 at least 3SF
(b)	$\frac{1}{2} \times 6 \times 9 \sin 105$			M1	
		26.1 cm^2	2	A1	26.07999 at least 3 SF
(c)	<u>352</u> "26.1"			M1	
		13.5	2	A1	13.49693 at least 3 SF
(d)	(6+9+"12.0")×"13.5"+2×"26.1"			M1	
		417 cm ²	2	A1	417.112 at least 3 SF (or awrt 417 if nc has been penalised)
					Total 9 marks

5 (a)	$\begin{array}{c} \swarrow \\ A \\ 7+x \\ 23-x \\ 7 \\ x \end{array}$	5-x $2+x$ S x $21-x$ T		B3	B2 for 4 correct entries added B1 for 2 correct entries added NB: Start entering marks starting with the 1 st B box so B2 (out of 3) would be entered as 1 1 0
			3		
(b)	$\begin{array}{c} x + 25 - x + 23 - x + 21 - x + 7 + x + 2 + x + x - 1 + 7 = 100 \\ \text{(their 8 entries)} \end{array}$			M1	ft Venn diagram
		16 (cao)	2	A1	
(c)	" $23-x"+x+"21-x"$ or " $(23-"16")"+"16"+"(21-"16")"$ NB: Numbers can be on Venn Diagram			M1	ft Venn diagram Do not condone negative members numbers
		28 (cao)	2	A1	
(d)		$\frac{5}{11}$ (cao)	1	B1	$\frac{25}{55}$, 0.454, 0.455, 45.4%, 45.5%
					Total 8 marks

6 (a)	$14 \times 24 + 17 \times 22 + 20 \times 28 + 24 \times 20 + 29 \times 6$			M1	3 correct <i>fx</i> products added
	(= 1924)				Σfx for consistent x values in each
				M1(DEP)	interval (all correct)
					NB: Must use mid-values
	1924			M1	
	100			(DEP)	
		awrt 19.2 km/l	4	A1	So accept, eg, 19.24
(b)	bars 16 – 18 height 11 cm (22 ss),	correct bars drawn		B3	B1 for each bar with correct width
	18 – 22 height 7 cm (14 ss),				and height.
	26 – 32 height 1 cm (2 ss)		3		
(c)	1 20			M1	Method to find the number of cars in
	$-\times 20$ oe 4				the interval $25 < x \le 26$
		11 (cao)	2	A1	
	NB: Thus $5 \rightarrow M1 A0$				Total 9 marks

7 (a)			2000 dollars	1	B1	
(b)	entrance fee = 1.2×8 (oe)	(=9.6)			M1	Complete method to find new
	visitors = 0.9×250 (oe)	(=225)				entrance fee OR number of
						visitors.
	$1.2 \times 8 \times 0.9 \times 250$				M1	
					(DEP)	
			2160 dollars	3	A1	
(c)	100 + 2r				M1	Complete method to find new
	entrance fee = $\frac{100}{100} \times 8$ (=8 + 0.16r)			(INDEP)	entrance fee.
	100 - r				M1	Complete method to find new
	visitors = $\frac{100}{100} \times 250$ (a)	=250-2.5r)			(INDEP)	number of visitors.
	$(100 \times 2) \times (100)$)			M1	
	$(T =) \left(\frac{100+2r}{100} \times 8\right) \left(\frac{100-r}{100}\right)$	×250 OR			(DEP)	
)				
	(8 + 0.16r)(250 - 2.5)	5r) OR $0.2(100+2r)(100-r)$				
	$0.2(10000 - 100r + 200r - 2r^2)$)	$2000 + 20r - 0.4r^2$	4	A1	dep on M marks
			(cso)			Expansion of brackets must be
			(0.0)			<u>shown.</u>
(d)	$dT_{-20,08r}$	$-0.4(r^2-50r+5000)$			M1	One term correct
	$\frac{1}{dr} = 20 - 0.8r$	(ie rewriting)				
	"20 - 0.8r" = 0	$-0.4((r-25)^2+5000-625)$			M1	Cand's derivative must be function
					(DEP)	of r
		ie completing the square				
			25 (cao)	3	A1	
						Total 11 marks

0	()		3	1	D1	
8	(a)		3		BI	
			0.75	2	B1	
	(b)		Correct curve		B3	-1 mark for
			drawn			each point missed/incorrectly plotted
						each point or segment missed
						straight line segments (penalise
						ONCE)
						tramlines (penalise ONCE)
						very poor curve
						NB: FT for (-1, "3") and
				3		(0.5, "0.75")
				U		$T_{01} - \pm \frac{1}{2}ss - \pm 0.025$
						$\frac{101}{2} = \frac{1000}{2}$
	(c)	$2x^3 - 3x + 2 = 1\frac{1}{2}$ OR			M1	
		$2x^3 - 3x + 2 = -2x^3 + 3x + 1$				
			-130211		A2	A1 for two correct (So in ePEN
			(1.5, 0.2, 1.1			this is scored at 1 then 0)
			(cao)			
			$Tol = \pm 1ss = \pm 0.05$			
				3		
	(d)	$2x^3 - 3x + 2 > 1 - 4x$			M1	condone "="
		Plot " $y = 1 - 4x$ "			M1(INDEP)	ft (must be a straight line)
		-0.6			A1	ft from graph dep on above M1
			x > -0.6	4	A1	cao
			$Tol = \pm 1ss = \pm 0.05$			Total 12 marks
			for both As above			

9 (a) (i)		4 b		B1
(ii)		"4 b" + 8 a		B1ft ft 4 b from (i)
(iii)		$4\mathbf{a} - 6\mathbf{b}$	3	B1
(b) (i)		λ "(4 a - 6 b)"		B1ft ft $4\mathbf{a} - 6\mathbf{b}$ from (a)(iii)
(ii)	$(4b'' + 4a + (\lambda (4a - 6b))))$	$4(\lambda+1)\mathbf{a}+(4-6\lambda)\mathbf{b}$		B1ft ft λ (4 a - 6 b) from (i) OR (a)(iii)
	OR $-2\mathbf{b} + 8\mathbf{a} + (\lambda - 1)^{"}(4\mathbf{a} - 6\mathbf{b})^{"}$		2	Simplification NOT required.
(c)		μ "("4 b " + 8 a)"	1	B1ft ft $4\mathbf{b} + 8\mathbf{a}$ from (a)(ii)
(d)	$``4(\lambda+1)a + (4 - 6\lambda)b'' = ``\mu(4b + 8a)''$			M1 ft on (b)(ii) and (c)
	"4+4 $\lambda = 8 \mu$ " and "4 - 6 $\lambda = 4 \mu$ "			M1(DEP) ft
	$-4 + 16\lambda = 0$ or $20 = 32 \mu$			M1 ft eliminate either variable
		$\lambda = \frac{1}{2}$.		A1 cso
		4		
	. 1 5	$\mu = \frac{5}{8}$	5	A1 cso
	NB: If just one of $\lambda = -$ or $\mu = -$ and no	ð		
	working seen, score 4 / 5 marks			
(e) (i)		20		B1 cao
(ii)		5	2	B1 cao
				Total 13 marks

10	(a)	$\left(2^{3x}\right)^{x-2} = 2^{3x^2 - 6x}$			M1	Multiply indices
		$\frac{12 \times 6^{2x-1}}{9^{x}} = \frac{2^{2} \times 3 \times 2^{2x-1} \times 3^{2x-1}}{\left(3^{2}\right)^{x}}$			M1	Express 12, 6 and 9 as products of 2 and 3.
		OR $\frac{3 \times 2^2 \times 2^{3x(x-2)} \times 2^{2x-1} \times 3^{2x-1}}{3^{2x}}$			(M1) (M1(DEP))	Factors of 2 OR 3 separated Factors of 2 AND 3 separated
			$n=3x^2-4x+1$ Accept 2^{3x^2-4x+1}	3	A1	cso
	(b)	$3x^2 - 4x + 1 = 5$			M1	(really a B1)
		(3x+2)(x-2) = 0			M1(INDEP)	or correct use of formula NB: Attempt on their 3 term quadratic
			$x = -\frac{2}{3}$ and $x = 2$	3	A1	
			(cao)			
						Total 6 marks

11	(a)		(1, 2), (3, 2), (3, 1)	1	B1	Coordinates or column vectors, any order
	(b)		Rotation 270° centre (0, 0)	3	B1 B1 B1	or -90° or 90° clockwise or <i>O</i> or origin
	(c)		$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	1	B1	
	(d)	$ \begin{pmatrix} -1 & -2 \\ 0 & 2 \end{pmatrix} \ \begin{pmatrix} 1 & 3 & 3 \\ 2 & 2 & 1 \end{pmatrix} \ $ NB: Order is important			M1	ft from (a) for three correct entries Columns could be in any order.
			(-5, 4), (-7, 4), (-5, 2)	2	A1 cao	Accept $\begin{pmatrix} -5 & -7 & -5 \\ 4 & 4 & 2 \end{pmatrix}$ with columns in any order.
	(e)	$\begin{pmatrix} -1 & -2 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ NB: Order is important			M1	ft from (c)
		OR $\binom{a \ b}{c \ d} \binom{-2 \ -1 \ -2}{1 \ 3 \ 3} = "\binom{-5 \ -5 \ -7}{4 \ 2 \ 4}"$ NB:(1) Order of coords important			(M1)	ft from (d)
		TWO correct eqns in <i>a</i> and <i>b</i> from "above" AND TWO correct eqns in <i>c</i> and <i>d</i> from "above"			(M1 (DEP))	
		Answer (cao)			(A1)	

$\begin{pmatrix} 2 & -1 \\ -2 & 0 \end{pmatrix}$	3	M1 A1	ft their <i>correct</i> product of <i>their</i> 2x2 matrices cao
			Total 10 marks

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom