

Mark Scheme (Results)

Summer 2018

Pearson Edexcel International GCSE In Mathematics B (4MB0) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code 4MB0_01_1806_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
 - Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

o M marks: method marks

A marks: accuracy marks

B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- o ft follow through
- o isw ignore subsequent working
- SC special case
- oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o eeoo each error or omission

No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score
no marks.

With working

If there is a wrong answer indicated always check the working in the body of the script and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses two A (or B) marks on that part, but can gain the M marks. Mark all work on follow through but enter AO (or BO) for the first two A or B marks gained.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there are multiple attempts shown, then all attempts should be marked and the highest score on a single attempt should be awarded.

Follow through marks

Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.

Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

Ignoring subsequent work

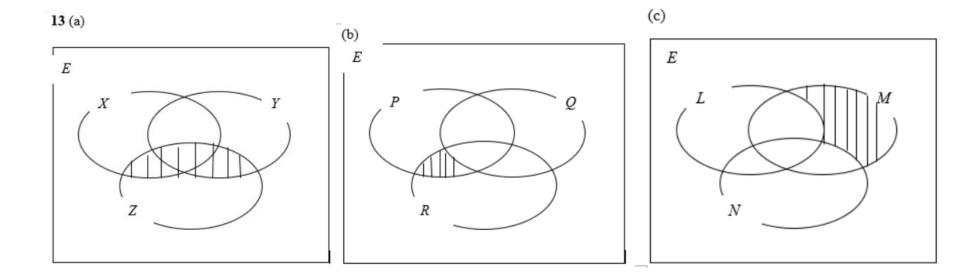
It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially shows that the candidate did not understand the demand of the question.

Linear equations

Full marks can be gained if the solution alone is given, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded.

Parts of questions


Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another

Question	Working	Answer	Mark	Notes
1	(2-2)	(0)	2	M1 One arithmetical error allowed in
	$\begin{pmatrix} 2-2\\ 3-(-4) \end{pmatrix}$	$\left(7\right)$		calculating both elements
	(3 (+))	(')		A1
				Total 2 marks
2	27	64.8	2	M1
	$\frac{27}{150} \times 360$ oe			A1 accept 65
				Total 2 marks
3	3 . 20	3	2	M1 - seen even within an expression
	$\frac{3}{7} \times \frac{20}{100}$	$\frac{3}{35}$		A1 oe but must be a fraction
	•			Total 2 marks
4	24 4 1	8	2	M1 oe
	$24 \times \frac{4}{3} \times \frac{1}{4}$ OR $24 \div 3$ OR			
	$24 \times \frac{4}{} - 24$			A1
] 3			
		<u> </u>		Total 2 marks
5	$\frac{4}{0000000000000000000000000000000000$	3.6	2	M1
	$\frac{1}{4+6}$ × 9 (6e)			A1
	•			Total 2 marks

Question	Working	Answer	Mark	Notes
6	$\frac{3x}{2x^{2}} + \frac{1}{2x^{2}}, \frac{1}{2x} \left(\frac{3x+1}{x}\right), \\ \frac{6x^{2} + 2x}{4x^{3}}$	$\frac{3x+1}{2x^2}$ (cao)	2	M1 – Combine fractions or starting to (ie 1st
	$\left[\frac{2x^2}{2x^2} + \frac{2x^2}{2x}\right] = \frac{2x}{x}$	${2x^2}$ (cao)		expression on the left which uses a common
	$\begin{bmatrix} 2x & 2x \\ 2x & 1 \end{bmatrix}$	2 <i>n</i> (Cao)		denominator)
	$6x^2 + 2x$			A1
	$4x^3$			
				Total 2 marks
7	$R = \frac{40}{2\pi} (=6.36619)$	awrt 127	3	M1 accept values lying between 6.3 and 6.4
				M1(DEP)
	$A = "\left(\frac{40}{2\pi}\right)"^2 \times \pi$			A1
	(211)		<u> </u>	T . 12 1
0	T .	2.5 ()		Total 3 marks
8	$\frac{1}{2}((2a+3a)\times 16)$	2.5 (oe)	3	M1
	<u> </u>			
	OR Rectangle + 2 triangles eg			
	$2a \times 16 + 2 \times \frac{1}{2} \times \left(\frac{a}{2}\right) \times 16$			
	(oe)			
	_ 100			M1 (DEP) ie a term isolated
	$5a = \frac{100}{8}$ (oe)			A1
			1	Total 3 marks
9 (a)		{2, 8}	1	B1
		,		
(1-)	\ \(\(\) \	(1 2 4 6 7 9 0)		M1 (Must be source)
(b)	$A' = \{1, 4, 6, 7, 9\}$	$\{1, 2, 4, 6, 7, 8, 9\}$	2	M1 (Must be correct)
				A1 (Elements can be in any order)
				NB: Repetition of elements scores A0
				Total 3 marks

Question	Working	Answer	Mark	Notes
10	2 - 4x + 8 = x - 12	$4.4, \frac{22}{5}, 4\frac{2}{5}$	3	M1 (Remove brackets)
	2 + 8 + 12 = x + 4x	5 5 (cao)		M1 (DEP) Collect terms in <i>x</i>
		(cuo)		A1 (dependent on both M marks)
	NB: (1) Allow ONE slip			
	when collecting the two M			
	marks			
	(2) No algebraic working			
	seen scores M0M0A0			
				Total 3 marks
11 (a)		23	1	B1
(b)	25 - 2n > n OR	8	2	M1
	25 > 3n			
	OR correct list to $n = 9$			A1
			1	Total 3 marks

Question	Working	Answer	Mark	Notes
12	2x-3(2x-6) = 8 (oe) leading to $4x = 10$	x = 2.5	3	M1 for correct substitution for y or x OR for correct
	OR $2\left(\frac{y}{2}+3\right)-3y=8$ (oe) leading to	y = -1		rearrangement and correct process to eliminate one variable.
	2y = -2			
	NB: Allow ONE arithmetic sign error for these two M marks			M1(DEP) for substitution of the value of one variable into one equation
				A1
		•		Total 3 marks
13 (a)		Correct shading	1	B1
(b)		Correct shading	1	B1
(c)		Correct shading	1	B1
		L		Total 3 marks

Question	Working	Answer	Mark	Notes
14	6z:3z:z=a:b:c	18	3	M1 (oe) Can be implied by the next line
	OR $2y: y: \frac{y}{3} = a:b:c$			
	$(:: y = 3)$ OR $x : \frac{x}{2} : \frac{x}{6} (:: x = 6)$			
	6×3×1			M1 (DEP) NB: $2 \times 1 \times \frac{1}{3}$ OR $1 \times \frac{1}{2} \times \frac{1}{6}$ scores M0
				A1
		T		Total 3 marks
15	$\frac{5000}{6.4 \times 10^{-6}}$ (oe) OR $\frac{5}{6.4} \times 10^{9}$ (oe)	$ \begin{array}{c c} 7.8 \times 10^8 \\ OR 780 000 \\ 000 \end{array} $	3	M1
	$= \frac{5000}{6.4} \times 10^6 , 781.25 \times 10^6 \text{ OR } 781.250.000$	(cao)		M1(DEP)
	6.4	(5.1.5)		A1
				Total 3 marks
16	$\left(\frac{dy}{dx} = \right) 2 \times 3x^2 - 5$ At $x = 2$, " $2 \times 3 \times 2^2 - 5$ "	19	3	M1 at least one non-constant term correctly differentiated
	At $x = 2$, " $2 \times 3 \times 2^2 - 5$ "			M1 (DEP) ie subst. $x = 2$ into "derivative"
				A1
				Total 3 marks

Question	Working	Answer	Mark		Notes	
17	$4x^2 + 4x + 1$ (oe) OR $(2x+1)(2x+1-(2x-2))$	6x + 3 OR $3(2x + 1)$	3	M1		
	$4x^2-2x-2$ (oe) OR $(2x+1)(2x+1-2x+2)$			M1	NB: Allow ONE slip for both M marks	
	, , , , , , , , , , , , , , , , , , ,			A1 cao		
					Total 3 marks	
18	$AX \times 3 = 9 \times 4$	4.5	3	M1		
	(AX = "12")					
	$OX = \frac{"12"+3}{2} - 3$			M1(DEI	P) for a complete method to find <i>OX</i>	
	2			A1		
				•	Total 3 marks	
19	$(2 \times 1 + 1 \times 3 2 \times (-1) + 1 \times 1) (5 -1)$	$\begin{pmatrix} 6 & -2 \end{pmatrix}$	3			
	$ \begin{pmatrix} 2 \times 1 + 1 \times 3 & 2 \times (-1) + 1 \times 1 \\ 1 \times 1 + 2 \times 3 & 1 \times (-1) + 2 \times 1 \end{pmatrix} = \begin{pmatrix} 5 & -1 \\ 7 & 1 \end{pmatrix} $	$\begin{pmatrix} 6 & -2 \\ 10 & 2 \end{pmatrix}$			on of <i>each</i> element)	
		(10 2)			ing A + I	
				(ditto)		
	$ \begin{pmatrix} "5"+1 & "-1"-1 \\ "7"+3 & "1"+1 \end{pmatrix} $,	P) (Correct method of evaluation of <i>each</i>	
	[("7"+3 "1"+1)				using cand's AB which must be 2x2)	
				OR find must be	ing $(A+I)B$ (ditto but using cand's $A+I$ which $2x2$)	
				A1		
					Total 3 marks	

Questio	on	Working	Answer	Mark	Notes
20 (a)	a)	$\frac{1}{2} \times 10 \times 24$ or $4 \times \left(\frac{1}{2} \times 5 \times 12\right)$	120 (cao)	2	M1 oe A1
(b	o) ,	$\sqrt{5^2 + 12^2} = \sqrt{169} = 13$	52 (cao)	2	M1 (one of) A1
		·			Total 4 marks
21 (a)	a) 1	$175 \times \frac{116}{100}$ (oe)	203	2	M1
		100			A1
(b	o) '	750	625	2	M1
	1	$\frac{750}{120} \times 100$ (oe)			A1
					Total 4 marks

Question	Working	Answer	Mark		Notes
22	$CD = 10 \times \cos 25^{\circ} = 9.063$	7.66	4	M1	M1 (OR $BC = 10 \times \sin 25^{\circ} = 4.2262$)
	"9.063" $\times \sin 25^\circ = 3.830$	(cao)		M1(DEP)	$(OR "4.226" \times sin65° = 3.830)$
	OR				OR
	AC "9.063" (AACD)				AC _ "4.226"
	$\frac{AC}{\sin 50} = \frac{5.005}{\sin 65} (\Delta ACD)$				$\frac{1}{\sin 130} - \frac{1}{\sin 25}$
	2×3.830			M1(DEP)	
	OR				
	"9.063"× sin 50				"4.226"×sin130
	sin 65				sin 25
				A1	A1
					Total 4 marks

Q22: Cosine Rule Method:

On $\triangle ABC$:

$$(\angle ABC = 130)$$

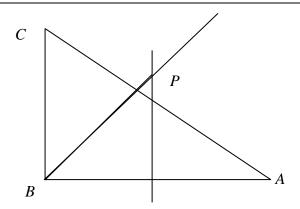
$$BC = 10 \times \sin 25 = 4.2262...$$
 M1

$$AC^2 = \frac{4.2262...^2 + 4.2262...^2 - 2 \times 4.2262...^2 \times \cos 130}{M1(DEP)}$$

$$AC = \sqrt{35.72...-(-22.96)}$$
 M1(DEP)

$$AC = 7.66$$
 A1 4

OR on $\triangle ADC$:


$$CD = 10 \times \cos 25^{\circ} = 9.063$$
 M1
 $AC^{2} = "9.063..."^{2} + "9.063..."^{2} - 2 \times "9.063..."^{2} \times \cos 50$ M1(DEP)

$$AC = \sqrt{164.27...-105.59}$$
 M1(DEP)

$$AC = 7.66$$
 A1

Question	Working	Answer	Mark	Notes
23	$0 \times 1 + 1 \times 5 + 2 \times 6 + 3 \times a + 4 \times 7 + 5 \times 1$	5 (cao)	4	M1 (Allow ONE error within a multiplication)
	1+5+6+a+7+1			
	$0 \times 1 + 1 \times 5 + 2 \times 6 + 3 \times a + 4 \times 7 + 5 \times 1$			M1(DEP) (Can be ft on above)
	1+5+6+a+7+1			
	$= \left(\frac{50 + 3a}{20 + a}\right) = 2.6$			
	50 + 3a = 52 + 2.6a			M1(DEP) (No errors) A1
	1		I	Total 4 marks

Question	Working	Answer	Mark	Notes
24 (a)		Construction of perpendicular bisector of AB	2	M1 Arcs, centred <i>A</i> and <i>B</i> , drawn above and below <i>AB</i> and intersecting A1 Perpendicular bisector drawn above <i>AC</i> and intersecting <i>AB</i>
(b)		Construction of bisector of angle <i>ABC</i>	2	M1 Arc(s) of equal radii, centred B , drawn and intersecting AB at X and BC at Y . Arcs of equal radii, centred X and Y , drawn and intersecting at Z (situated in between AB and BC) A1 (Overlay lines must cover candidate's lines within ΔABC)
(c)		3.2	1	B1 NB: (1) Dependent on BOTH M marks (2) Allowed range is 3 to 3.4
				Total 5 marks

Question	Working	Answer	Mark	Notes		
25	$\sqrt{1156} = 34$	8, 9	5	B1		
	(34-2x)x = 144 (oe)			M1		
	$2x^2 - 34x + 144 = 0 \text{ (oe)}$			M1(DEP) oe for a correct 3 term quadratic (=0)		
	2(x-9)(x-8) = 0 (oe)			M1 (INDEP) (Factorising or solving "trinomial		
				quadratic")		
				A1 (cao) (DEP on all THREE M marks)		
	Total 5 marks					

OR

$$\left(\frac{144}{x} + 2x\right)^{2} = 1156$$

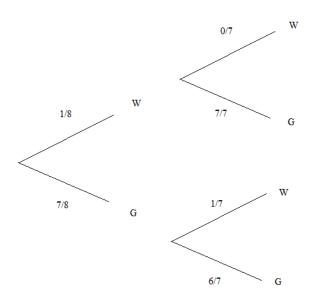
$$4x^{4} - 145x^{2} + 20736 = 0 \text{ OR } x^{4} - 145x^{2} + 5184 = 0$$

$$(x^{2} - 64)(x^{2} - 81) (= 0) \text{ (solving trinomial quadratic in } x^{2})$$

$$x^{2} = 64 \text{ and } x^{2} = 81 \text{ (cao, can be implied)}$$

$$(x =) 8, 9$$
M1(DEP)
A1

Question	Working	Answer	Mark	Notes
26 (a)	$\frac{y^{\frac{3}{2}}}{y^{-2}}$, $\frac{y^{1+\frac{1}{2}}}{y^{-2}}$, $y^{1+\frac{1}{2}}y^2$ OR $y^3y^{\frac{1}{2}}$	$y^{\frac{7}{2}}$	2	M1 A1
	$(2^{2})^{3n} = 2 \times (2^{3})^{n} \text{OR}$ $\left(8^{\frac{2}{3}}\right)^{3n} = 8^{\frac{1}{3}} \times 8^{n}$ $6n = 1 + 3n \text{ or } n = \frac{1}{3}$ $\text{OR} 2n = \frac{1}{3} + n \text{ or } n = \frac{1}{3}$	2	3	M1 OR $3n \log(4) = \log(2) + n \log(8)$ M1(DEP) (Equating exponents) OR $n(3 \times 0.6021 - 0.9031) = 0.3010$ (depending on base) or $n = \frac{1}{3}$
				Total 5 marks


Question	Working	Answer	Mark	Notes
27 (a)	$(-1)^{3} + k(-1)^{2} + (-1) + 6 = 0$ OR $\left(\frac{x^{3} + kx^{2} + x + 6}{x + 1} = x^{2} + (k - 1)x + (2 - k)\right)$ Rm $(6 - (2 - k)) = 0$	-4	2	M1 A1
(b)	$x^{3} - 4 x^{2} + x + 6 = (x+1)(ax^{2} + bx + c)$ $(x^{2} - 5x + 6) = (x-2)(x-3)$	(cao)	3	M1 for finding " $a = 1$ " and " $b = -5 \forall$ =OR algebraic division producing " $x^2 - 5x$ " ie ft on their " $k = -4$ " M1(INDEP) attempt to factorise the "trinomial quadratic term"
	(x+1)(x-2)(x-3)			A1 (cao) Total 5 marks

Question	Working	Answer	Mark	Notes			
28 (a)	$\frac{1}{2} \times 10 \times 10 \times \sin 60 = 25\sqrt{3} \ (=43.3)$ $4 \times 25\sqrt{3} + 10 \times 10$	awrt 273	3	M1 or a complete method to find the area of one triangular face M1(DEP) A1			
(b)	Base diagonal = $\sqrt{10^2 + 10^2} = 10\sqrt{2}$ Height = $\sqrt{10^2 - (5\sqrt{2})^2} = 5\sqrt{2}$ (=7.07) Vol = $\frac{1}{3} \times 10 \times 10 \times 5\sqrt{2}$	awrt 236	4	M1 or ht of Δ is $\sqrt{10^2 - 5^2}$ $\left(= \sqrt{75} = 8.66025 \right)$ M1(DEP) or ht of pyramid is $\sqrt{75 - 5^2}$ M1(DEP) A1 awrt			
Total 7 marks							

Question	Working	Answer	Mark	Notes
Question 29	Working Box A: $P_A(GG) = \frac{7}{8} \times \frac{6}{7} (= \frac{3}{4})$ Box A: $P_A(W \text{ and } G) = \frac{1}{8} \times \frac{7}{7} + \frac{7}{8} \times \frac{1}{7} (= \frac{1}{4})$ Box B: $P_B(GG \text{ from } A \text{ then } GG) = P_B(GG) = \frac{9}{10} \times \frac{8}{9} (= \frac{4}{5})$ $P_B(W \text{ and } G \text{ from } A \text{ then } W \text{ and } G) = P_B(W \text{ and } G) = \frac{2}{10} \times \frac{8}{9} + \frac{8}{10} \times \frac{2}{9} (= \frac{16}{45})$ NB: Treat above three M marks as B marks for seeing	31/45	Mark 6	Notes M1* OR Correct Tree Diagram for removal of two beads from A M1* at least one correct product seen OR $1 - P(GG) \left(=1 - \frac{3}{4}\right)$ OR Correct Tree Diagram for removal of two beads from A M1* for any one
	the product (GG) or sum of products (WG) within an expression for the relevant probabilty $P_1 = P_A (GG) \times P_B (GG) = \frac{3}{4} \times \frac{4}{5} (= \frac{3}{5})$ $P_2 = P_A (W \text{ and } G) \times P_B (W \text{ and } G) = \frac{1}{4} \times \frac{16}{45} (= \frac{4}{45})$ $P_{TOTAL} = P_1 + P_2 = \frac{4}{45} + \frac{3}{5}$ NB: If the question has been done with replacement of beads then score no marks			M1*(DEP) for any one NB: M1* - any of these may be seen embedded in a probability product of 4 terms M1(DEP) Aloe (awrt 0.69)
				Total 6 marks

Summary: Have to move GG or WG between **A** and **B** so $P_{TOTAL} = P(GG) + P(WG)$

Tree Diagram for A

