Pearson Edexcel

Mark Scheme (Results)

Summer 2018

Pearson Edexcel International GCSE In Mathematics B (4MB0) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code 4MBO_01_1806_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
- cao - correct answer only
ft - follow through
isw - ignore subsequent working
SC - special case
oe - or equivalent (and appropriate)
dep - dependent
indep - independent
- eeoo - each error or omission
- No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated always check the working in the body of the script and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
Any case of suspected misread loses two A (or B) marks on that part, but can gain the M marks. Mark all work on follow through but enter A 0 (or B 0) for the first two A or B marks gained.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If there are multiple attempts shown, then all attempts should be marked and the highest score on a single attempt should be awarded.

- Follow through marks

Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.

Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially shows that the candidate did not understand the demand of the question.

- Linear equations

Full marks can be gained if the solution alone is given, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another

Question	Working	Answer	Mark	Notes
1	$\binom{2-2}{3-(-4)}$	$\binom{0}{7}$	2	M1 One arithmetical error allowed in calculating both elements A1
				Total 2 marks
2	$\frac{27}{150} \times 360 \text { oe }$	64.8	2	M1
				A1 accept 65
		Total 2 marks		
3	$\frac{3}{7} \times \frac{20}{100}$	3	2	M1 - seen even within an expression
		35		A1 oe but must be a fraction
4				Total 2 marks
	$\begin{aligned} & 24 \times \frac{4}{3} \times \frac{1}{4} \text { OR } 24 \div 3 \text { OR } \\ & 24 \times \frac{4}{3}-24 \end{aligned}$	8	2	M1 oe
				A1
				Total 2 marks
5	$\frac{4}{4+6} \times 9 \quad \text { (oe) }$	3.6	2	M1
				A1

Question	Working	Answer	Mark	Notes
10	$2-4 x+8=x-12$	$4.4, \frac{22}{5}, 4 \frac{2}{5}$	3	M1 (Remove brackets)
	$2+8+12=x+4 x$			M1 (DEP) Collect terms in x
				A1 (dependent on both M marks)
	NB: (1) Allow ONE slip when collecting the two M marks (2) No algebraic working seen scores M0M0A0			
Total 3 marks				
11 (a)		23	1	B1
(b)	$\begin{aligned} & 25-2 n>n \quad \text { OR } \\ & 25>3 n \end{aligned}$	8	2	M1
	OR correct list to $n=9$			A1

Question	Working	Answer	Mark	Notes
12	$2 x-3(2 x-6)=8 \quad$ (oe) leading to $4 x=10$ OR $\quad 2\left(\frac{y}{2}+3\right)-3 y=8 \quad$ (oe) leading to $2 y=-2$	$\begin{aligned} & x=2.5 \\ & y=-1 \end{aligned}$	3	M1 for correct substitution for y or x OR for correct rearrangement and correct process to eliminate one variable.
	NB: Allow ONE arithmetic sign error for these two M marks			M1(DEP) for substitution of the value of one variable into one equation
				A1
				Total 3 marks
13 (a)		Correct shading	1	B1
(b)		Correct shading	1	B1
(c)		Correct shading	1	B1

(c)

Question	Working	Answer	Mark	Notes
14	$\begin{aligned} & 6 z: 3 z: z=a: b: c \\ & \text { OR } \quad 2 y: y: \frac{y}{3}=a: b: c \\ & \quad(\therefore y=3) \text { OR } x: \frac{x}{2}: \frac{x}{6}(\therefore x=6) \end{aligned}$	18	3	M1 (oe) Can be implied by the next line
	$6 \times 3 \times 1$ 边			M1 (DEP) $\quad \mathbf{N B}: 2 \times 1 \times \frac{1}{3}$ OR $1 \times \frac{1}{2} \times \frac{1}{6}$ scores M0
				A1
Total 3 marks				
15	$\begin{aligned} & \frac{5000}{6.4 \times 10^{-6}} \quad \text { (oe) OR } \frac{5}{6.4} \times 10^{9}(\mathrm{oe}) \\ & =\frac{5000}{6.4} \times 10^{6}, 781.25 \times 10^{6} \text { OR } 781250000 \end{aligned}$	$\begin{gathered} 7.8 \times 10^{8} \\ \text { OR } 780000 \\ 000 \\ \text { (cao) } \end{gathered}$	3	M1 M1(DEP)
				A1
				Total 3 marks
16	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) 2 \times 3 x^{2}-5$	19	3	M1 at least one non-constant term correctly differentiated
	At $x=2, \quad$ " $2 \times 3 \times 2^{2}-5 "$			M1 (DEP) ie subst. $x=2$ into "derivative"
				A1

Question	Working	Answer	Mark		Notes
22	$C D=10 \times \cos 25^{\circ}=9.063$	$\begin{aligned} & 7.66 \\ & \text { (cao) } \end{aligned}$	4	M1	M1 (OR BC $\left.=10 \times \sin 25^{\circ}=4.2262\right)$
	$" 9.063 " \times \sin 25^{\circ}=3.830 \ldots$ OR $\frac{A C}{\sin 50}=\frac{" 9.063 "}{\sin 65} \quad(\Delta A C D)$			M1(DEP)	$\begin{aligned} & \left(\text { OR " } 4.226^{\prime \prime} \times \sin 65^{\circ}=3.830 \ldots\right) \\ & \text { OR } \\ & \frac{A C}{\sin 130}=\frac{" 4.226 "}{\sin 25} \end{aligned}$
	$\begin{aligned} & 2 \times 3.830 \\ & \text { OR } \\ & \frac{" 9.063 " \times \sin 50}{\sin 65} \end{aligned}$			M1(DEP)	$\frac{" 4.226 " \times \sin 130}{\sin 25}$

Q22: Cosine Rule Method:

On $\triangle A B C$:

($\angle A B C=130$)
$B C=10 \times \sin 25=4.2262 \ldots$
M1
$A C^{2}=" 4.2262 \ldots{ }^{2}+44.2262 \ldots{ }^{2}-2 \times 4.2262 \quad{ }^{2} \times \cos 130$
M1 (DEP)
$A C=\sqrt{35.72 \ldots-(-22.96)}$
M1(DEP)
$A C=7.66$
A1
4
OR on $\triangle A D C$:

```
\(C D=10 \times \cos 25^{\circ}=9.063\)
\(A C^{2}=" 9.063 \ldots . .{ }^{2}+" 9.063 \ldots{ }^{\prime 2}-2 \times\) "9.063 ..." \(2 \times \cos 50\)
\(A C=\sqrt{164.27 \ldots-105.59}\)
\(A C=7.66\)
```

M1
M1(DEP)
M1(DEP)
A1

Question	Working	Answer	Mark	Notes
23	$\underline{0 \times 1+1 \times 5+2 \times 6+3 \times a+4 \times 7+5 \times 1}$	5 (cao)	4	M1 (Allow ONE error within a multiplication)
	$1+5+6+a+7+1$			
	$0 \times 1+1 \times 5+2 \times 6+3 \times a+4 \times 7+5 \times 1$			M1(DEP) (Can be ft on above)
	$\begin{aligned} & 1+5+6+a+7+1 \\ & =\left(\frac{50+3 a}{20+a}\right)=2.6 \end{aligned}$			
	$50+3 a=52+2.6 a$			M1(DEP) (No errors)
				A1

Question	Working	Answer	Mark	Notes
24 (a)		Construction of perpendicular bisector of $A B$	2	M1 Arcs, centred A and B, drawn above and below $A B$ and intersecting
				A1 Perpendicular bisector drawn above $A C$ and intersecting $A B$
(b)		Construction of bisector of angle $A B C$	2	M1 $\operatorname{Arc}(\mathrm{s})$ of equal radii, centred B, drawn and intersecting $A B$ at X and $B C$ at Y. Arcs of equal radii, centred X and Y, drawn and intersecting at Z (situated in between $A B$ and $B C$)
				A1 (Overlay lines must cover candidate's lines within $\triangle A B C$)
(c)		3.2	1	B1 NB: (1) Dependent on BOTH M marks (2) Allowed range is 3 to 3.4

Question	Working	Answer	Mark	Notes
25	$\sqrt{1156}=34$	8, 9	5	B1
	$(34-2 x) x=144$ (oe)			M1
	$2 x^{2}-34 x+144=0$ (oe)			M1(DEP) oe for a correct 3 term quadratic (=0)
	$2(x-9)(x-8)=0 \quad(\mathrm{oe})$			M1 (INDEP) (Factorising or solving "trinomial quadratic")
				A1 (cao) (DEP on all THREE M marks)

OR

$\left(\frac{144}{x}+2 x\right)^{2}=1156$		B1
$4 x^{4}-145 x^{2}+20736=0$	OR	$x^{4}-145 x^{2}+5184=0$
$\left(x^{2}-64\right)\left(x^{2}-81\right)(=0)$	(solving trinomial quadratic in $\left.x^{2}\right)$	M1
$x^{2}=64$ and $x^{2}=81$ (cao, can be implied) $(x=) 8,9$	M1(INDEP)	
		A1

Question	Working	Answer	$\begin{gathered} \text { Mark } \\ \hline 2 \end{gathered}$	Notes	
26 (a)	$\frac{y^{\frac{3}{2}}}{y^{-2}}, \frac{y^{1+\frac{1}{2}}}{y^{-2}}, y^{1+\frac{1}{2}} y^{2} \text { OR } y^{3} y^{\frac{1}{2}}$	$y^{\frac{7}{2}}$		M1	
				A1	
(b)	$\begin{aligned} & \left(2^{2}\right)^{3 n}=2 \times\left(2^{3}\right)^{n} \quad \text { OR } \\ & \left(8^{\frac{2}{3}}\right)^{3 n}=8^{\frac{1}{3}} \times 8^{n} \end{aligned}$	2	3	$\begin{aligned} & \text { M1 } \\ & \text { OR } 3 n \log (4)=\log (2)+n \log (8) \end{aligned}$	
	$\begin{aligned} & 6 n=1+3 n \text { or } n=\frac{1}{3} \\ & \text { OR } 2 n=\frac{1}{3}+n \text { or } n=\frac{1}{3} \end{aligned}$			M1 (DEP) (Equating exponents) OR $n(3 \times 0.6021-0.9031)=0.3010$ (depending on base) or $n=\frac{1}{3}$	
				A1	
Total 5 marks					

Question	Working	Answer	Mark	Notes
27 (a)	$(-1)^{3}+k(-1)^{2}+(-1)+6=0$	-4	2	M1
	OR			A1
	$\binom{\frac{x^{3}+k x^{2}+x+6}{x+1}=x^{2}+(k-1) x+(2-k)}{\operatorname{Rm}(6-(2-k))}$			
	$(6-(2-k))=0$			
(b)	$x^{3}-4 " x^{2}+x+6=(x+1)\left(a x^{2}+b x+c\right)$	(cao)	3	M1 for finding " $a=1$ " and " $b=-5 \forall$ $=$ OR algebraic division producing " $x^{2}-5 x \ldots$... ie ft on their " $k=-4$ "
	$\left(x^{2}-5 x+6\right)=(x-2)(x-3)$			M1 (INDEP) attempt to factorise the "trinomial quadratic term"
	$(x+1)(x-2)(x-3)$			A1 (cao)

	Working	Answer	Mark	Notes
$28 \quad \text { (a) }$	$\frac{1}{2} \times 10 \times 10 \times \sin 60=25 \sqrt{3}(=43.3 \ldots)$	awrt 273	3	M1 or a complete method to find the area of one triangular face
	$4 \times 25 \sqrt{3}+10 \times 10$			M1(DEP)
				A1
(b)	Base diagonal $=\sqrt{10^{2}+10^{2}}=10 \sqrt{2}$	awrt 236	4	M1 or ht of Δ is $\sqrt{10^{2}-5^{2}} \quad(=\sqrt{75}=8.66025 \ldots)$
	$\begin{aligned} & \text { Height } \left.=\sqrt{10^{2}-(5 \sqrt{2}}\right)^{2}=5 \sqrt{2} \\ & (=7.07 \ldots) \end{aligned}$			M1 (DEP) or ht of pyramid is $\sqrt{75-5^{2}}$
	$\mathrm{Vol}=\frac{1}{3} \times 10 \times 10 \times 5 \sqrt{2}$			M1 (DEP)
	$\mathrm{Vol}=\frac{1}{3} \times 10 \times 10 \times 5 \sqrt{2}$			A1 awrt

Question	Working	Answer	Mark	Notes
29	Box A: $\mathrm{P}_{\mathrm{A}}(\mathrm{GG})=\frac{7}{8} \times \frac{6}{7}\left(=\frac{3}{4}\right)$	$\frac{31}{45}$	6	M1* OR Correct Tree Diagram for removal of two beads from A
	$\operatorname{Box} A: \quad P_{A}(W$ and $G)=\frac{1}{8} \times \frac{7}{7}+\frac{7}{8} \times \frac{1}{7}\left(=\frac{1}{4}\right)$			M1* at least one correct product seen OR $1-\mathrm{P}(\mathrm{GG})\left(=1-\frac{3}{4}\right)$ OR Correct Tree Diagram for removal of two beads from A
	Box B: $\mathrm{P}_{\mathrm{B}}(\mathrm{GG}$ from A then GG$) \equiv \mathrm{P}_{\mathrm{B}}(\mathrm{GG})=\frac{9}{10} \times \frac{8}{9}\left(=\frac{4}{5}\right)$ $\mathrm{P}_{\mathrm{B}}(\mathrm{W}$ and G from A then W and G$) \equiv \mathrm{P}_{\mathrm{B}}(\mathrm{W}$ and G$)=$ $\frac{2}{10} \times \frac{8}{9}+\frac{8}{10} \times \frac{2}{9}\left(=\frac{16}{45}\right)$ NB: Treat above three M marks as B marks for seeing the product (GG) or sum of products (WG) within an expression for the relevant probabilty			M1* for any one
	$\begin{aligned} & P_{1}=P_{A}(G G) \times P_{B}(G G)=\frac{3}{4} \times \frac{4}{5}\left(=\frac{3}{5}\right) \\ & P_{2}=P_{A}(W \text { and } G) \times P_{B}(W \text { and } G)=\frac{1}{4} \times \frac{16}{45}\left(=\frac{4}{45}\right) \end{aligned}$			M1*(DEP) for any one NB: M1* - any of these may be seen embedded in a probability product of 4 terms
	$\mathrm{P}_{\text {TOTAL }}=\mathrm{P}_{1}+\mathrm{P}_{2}=\frac{4}{45}+\frac{3}{5}$			M1(DEP)
	NB: If the question has been done with replacement of beads then score no marks			A1oe (awrt 0.69)

Summary: Have to move GG or WG between \mathbf{A} and \mathbf{B} so $\mathrm{P}_{\text {Total }}=\mathrm{P}(\mathrm{GG})+\mathrm{P}(\mathrm{WG})$
Tree Diagram for A

