Pearson
 Edexcel

Mark Scheme (Results)

January 2019

Pearson Edexcel International GCSE
In Mathematics B (4MBO)
Paper 01R

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2019
Publications Code 4MB0_01R_1901_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.

Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep-dependent
- indep - independent
- eeoo - each error or omission

- No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used. If there is no answer on the answer line then check the working for an obvious answer.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Question	Working	Answer	Mark	Notes
1	190×0.454	86.26	2	M1 implied by a correct answer awrt 86.3Allow if correct answer in working A1 but rounded off on answer line
2	$B C=\sqrt{50^{2}-25^{2}}$ or $\sqrt{1875}$	43.3	2	implied by correct answer M1 Allow for $B C=50 \cos 30^{\circ}$ or $25 \tan 60^{\circ}$ Implied by $25 \sqrt{3}$ awrt 43.3 A1 Do not allow answer of $25 \sqrt{3}$
3	either $3 a^{2} b^{5}$ (3 term expression in a and b) or correct partial factorisation eg $3 a^{2}\left(a^{3} b^{5}-2 a b^{6}+5 b^{7}\right) \text { or } 3 b^{5}\left(a^{5}-2 a^{3} b+5 a^{2} b^{2}\right)$	$3 a^{2} b^{5}\left(a^{3}-2 a b+5 b^{2}\right)$	2	M1 partial correct factorisation where the common factor contains at least 2 different terms taken out (eg $3 a, 3 b$, $a b$ or $a b^{2}$) A1
4 (a)		0.086	1	B1
(b)		0.0856	1	B1
5	$\begin{aligned} \mathrm{n}(B) & =\mathrm{n}(A \cup B)+\mathrm{n}(A \cap B)-\mathrm{n}(A) \\ & =60+17-42 \end{aligned}$	35	2	Allow Venn Diagram or working showing M1 clear evidence that $\mathrm{n}\left(A^{\prime} \cap B\right)=18$ (M1) Must check working. 18 with no working or incorrect working M0

Question	Working	Answer	Mark	Notes
6	$\left.\begin{array}{llc}42=2 \times 3 \times 7 & & 6 \times 7 \\ 60=2^{2} \times 3 \times 5 & \text { OR } & 6 \times 2 \times 5 \\ 66=2 \times 3 \times 11 & & 6 \times 11\end{array}\right\}(2$ of $)$ OR 2 correct Factor Trees	4620	2	M1 Implied by correct answer Allow if they then find HCF in error A1
7	$\$ 338 \times \frac{100}{65}(\mathrm{oe})$	520	2	M1 alternative method $x-0.35 x=338$ oe. Implied by correct answer A1
8		$\begin{gathered} 28 \\ -11 \end{gathered}$	2	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$

Question	Working	Answer	Mark	Notes
9	$\begin{aligned} & \tan 35^{\circ}=\frac{65}{B C}(\mathrm{oe}) \\ & B C=92.83 \end{aligned}$	92.8	2	M1 Alternative methods $\tan 55^{\circ}=\frac{B C}{65} \text { or } \frac{a}{\sin 55^{\circ}}=\frac{65}{\sin 35^{\circ}}$ awrt 92.8/92.9 A1 $\mathbf{S C} \tan 35^{\circ}=\frac{B C}{65} \quad \mathrm{~B} 1$ where $\angle B A C$ is marked as 35 on the diagram.
10	Use of $\sqrt{\left(\frac{324}{441}\right)}$ or $\sqrt{\left(\frac{441}{324}\right)}$ (oe) $\begin{equation*} h_{B}=9 \times \sqrt{\left(\frac{441}{324}\right)} \tag{oe} \end{equation*}$	awrt 10.5(cm)	3	B1 must have the square root at some point. Eg 6:7, 7:6, 21:18. 18:21 M1 Fully correct method A1
11	$a b d=b^{2} c d-b^{2}+a$ $a(b d-1)=b^{2} c d-b^{2}$	$a=\frac{b^{2}(c d-1)}{(b d-1)} \text { oe }$	3	Remove denominator M1 $\text { Allow } a b d=b^{2} c d-b^{2} \pm a \text { or }$ $a^{2} b d=a b^{2} c d-a b^{2} \pm a^{2}$ dep on $1^{\text {st }}$ M1 Collecting terms in a and M1 taking out a as a common factor Allow 2 sign errors only A1 (oe) eg $\frac{b c-\frac{b^{2}}{b d}}{1-\frac{1}{b d}}$

| Question | (a) | Working
 Answer | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (b) | | Bark must be shaded | |

Question	Working			Answer	Mark		Notes
13	$\begin{align*} & 6^{3}-\pi\left(\frac{4}{2}\right)^{2} \times 6[=216-24 \pi] \tag{oe}\\ & \frac{6^{3}-\pi\left(\frac{4}{2}\right)^{2} \times 6}{6^{3}} \tag{oe} \end{align*}$			$\left(1-\frac{\pi}{9}\right), \frac{9-\pi}{9}$	3	M1 M1 A1	allow awrt 141 dep on $1^{\text {st }}$ M1 allow awrt 0.651 Allow $1-0.11 \pi \quad$ (or better) ISW if have correct answer in working NB awrt 0.651 with no working gets M1M1A0
14	Method 1	Method 2	Method 3	40	4	B1	Allow if angles given on diagram
	$\begin{gathered} \angle A C D=70^{\circ} \\ \text { (Alt. Seg. Th.) } \end{gathered}$	$\begin{gathered} \angle B A D=80^{\circ} \\ (\text { Cyclic Quad. }) \\ \therefore \angle P A B=30^{\circ} \\ (\angle \text { s on str. line }) \end{gathered}$	$\begin{gathered} \angle A C D=70^{\circ} \\ \text { (Alt. Seg. Th.) } \end{gathered}$				
	$\begin{aligned} & \therefore \angle B C A=30^{\circ} \\ & \text { (Alt. Seg. Th.) } \end{aligned}$	$\begin{aligned} & \therefore \angle B C A=30^{\circ} \\ & \text { (Alt. Seg. Th.) } \end{aligned}$	$\begin{gathered} \therefore \angle A D C=70^{\circ} \\ \text { (Cyclic Quad.) } \\ \therefore \angle C A D=40^{\circ} \\ \quad(\angle \mathrm{s} \text { of } \triangle) \end{gathered}$			B1	Allow if angles given on diagram
	$\begin{aligned} \therefore & \angle B A C=40^{\circ} \\ & (\angle \mathrm{s} \text { of } \triangle) \end{aligned}$	$\begin{aligned} \therefore & \angle B A C=40^{\circ} \\ & (\angle \mathrm{s} \text { of } \triangle) \end{aligned}$	$\begin{aligned} & \therefore \angle B A C=40^{\circ} \\ & \text { (Cyclic Quad.) } \end{aligned}$			B1	Do not award if from incorrect working eg 80/2 NB the above B marks are for the angles
	Alternate Seg T or angles in sam	orem and $\angle s$ of \triangle segment	$\underline{\text { Triangle }}=180$			B1	

Question	Working	Answer	Mark	Notes
15	$47.5 \leq t<48.0: F D=8 \quad \therefore 8=\alpha \frac{20}{0.5} \quad \alpha=0.2$ or Area representing frequency: $20=\alpha(0.5 \times 8) \quad \therefore \alpha=5$ $46.0 \leq t<46.5: F D=4$ units, bar drawn $46.5 \leq t<47.5: 15$ athletes $48.0 \leq t<50.0: 20$ athletes $F D=3$ units, bar drawn	$\begin{gathered} 4 \text { units } \\ 15 \\ 20 \\ 3 \text { units } \end{gathered}$	4	B1 NB: "unit" $=1 \mathrm{~cm}$ B1 B1 B1ft ft their " 15 " SC if no marks awarded B1 for a correct frequency density eg 8 (allow as a scale)
16 (a) (b)	$4 \times 6=10 \times X C$ Area of $\triangle A X B=\frac{1}{2} \times 10 \times 6 \times \sin 60$	2.4 26	2 2	M1 A1 M1 implied by $15 \sqrt{3}$ A1 Accept 26.0

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Working \& Answer \& Mark \& Notes \\
\hline \begin{tabular}{l}
(a) \\
(b) \\
(c)
\end{tabular} \& \begin{tabular}{l}
Arc, centred \(C\), radius 5 cm , drawn within \(A B C D\) \\
Arcs having the same radius, centred \(A\) and \(D\) (or \(B\) and \(C\)) intersecting \\
on both sides of \(A D\) (or \(B C\)) \\
OR Two sets of arcs, each set having the same radius, centred \(A\) and \(D\) (or \(B\) and \(C\)) intersecting within \(A B C D\) \\
Lines joining points of intersecting drawn within ABCD \\
\(R\) shaded and labelled
\end{tabular} \& \& \begin{tabular}{l}
2 \\
1
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1 Condone missing \(R\) \\
B1
\end{tabular} \\
\hline \begin{tabular}{l}
\[
20
\] \\
(a) \\
(b)
\end{tabular} \& \begin{tabular}{lll}
\(-10 \leq 5 x\) \& OR \& \(5 x<15\) \\
\(-10 \leq 5 x\) \& and \& \(5 x<15\)
\end{tabular} \& \[
\begin{gathered}
x \geq-2 \\
x<3
\end{gathered}
\] \& 4

1 \& | M1 either |
| :--- |
| (dep) both |
| M1 |
| NB $-2 \leq x<3$ will gain both A marks |
| A1 |
| NB SC If there is a list of numbers on the answer line mark the inequalities in |
| A1 the working and then knock off the last A mark awarded. |
| B1 ft their answer to part(a) no need for numbers to be marked. A |
| B1 single line between the circles. |

\hline
\end{tabular}

Question	Working	Answer	Mark	Notes
(a) (b) (c)	Rearrangement of the 12 weights in ascending (descending) order (allow 1 slip/omission) and $\frac{24+25}{2}$ (seen or implied by answer) $\frac{\Sigma \text { masses }(=291)}{12}$	$\begin{gathered} 24.5 \\ 24.25 \\ 2 / 3 \text { (oe) } \end{gathered}$	2 2	M1 if numbers not rearranged the answer is 23.5 and gains M0A0 A1 (cao) M1 Allow for (1 missing value /error) in the sum A1 (cao) awrt $0.67 / 67 \%$ or better No need for B1 fraction to be simplified eg $\frac{8}{12}$
22	$\begin{aligned} & \frac{75^{3 n} \times 3^{2 n^{2}-10 n} \times 5^{2-6 n}}{45^{2}}=3^{y} \\ & \frac{3^{3 n} \times 5^{6 n} \times 3^{2 n^{2}-10 n} \times 5^{2} \times 5^{-6 n}}{45^{2}}=3^{y} \\ & \frac{3^{3 n} \times 5^{6 n} \times 3^{2 n^{2}-10 n} \times 5^{2} \times 5^{-6 n}}{3^{4} \times 5^{2}}=3^{y} \\ & \frac{3^{3 n} 3^{2 n^{2}-10 n}}{3^{4}}=3^{y} \\ & \therefore y=2 n^{2}-7 n-4 * \end{aligned}$		5	M1 $3^{2\left(n^{2}-5 n\right)}=3^{2 n^{2}-10 n} \text { or } 5^{2(1-3 n)}=5^{2-6 n}$ M1 Rewrite $75^{3 n}$ as $3^{3 n} \times 5^{6 n}$ or $(3 * 5 * 5)^{3 n}$ and $\quad 5^{2(1-3 n)}=5^{2} \times 5^{-6 n}$ Rewrite 45^{2} as $3^{4} \times 5^{2}$ M1 NB: Above 3 M1s can be implied by correct working M1 Dependent on all 3 previous M marks. Elimination of factors of 5 A1 cso Fully correct solution with no errors.

Question	Working	Answer	Mark	Notes
23 (a) (b)	$(1-x)^{2}=4 \pi x^{2}$ $\begin{aligned} x & =\frac{-2 \pm \sqrt{(2)^{2}-4 \times(4 \pi-1) \times(-1)}}{2(4 \pi-1)} \\ & =\frac{-2 \pm 4 \sqrt{\pi}}{2(4 \pi-1)} \end{aligned}$	$x^{2}(4 \pi-1)+2 x-1=0$ $\therefore x=\frac{2 \sqrt{\pi}-1}{4 \pi-1}$ AND since $x>0$	3	must be in part(a) M1 NB M0 if have $\frac{4}{3} \pi r^{2}$ and then multiply A1* by 3 cso correct method for solving a quadratic M1 Allow $x=\frac{-2 \pm \sqrt{16 \pi}}{2(4 \pi-1)}$ oe dM1 (dep) for simplifying $\sqrt{16 \pi}$ in the fraction (oe) must be fully simplified allow a length > 0 for reason A1 $\quad \mathbf{N B}$ no marks for finding π in terms of x
24	$3-4 x$ as the $(1,2)$ element of $3 \mathbf{A}-2 \mathbf{B}$ $3 x-4 y$ as the $(2,2)$ element of $3 \mathbf{A}-2 \mathbf{B}$ $" 3-4 x "=-5$ $" 3 \times " 2 "-4 y \text { " }=26$	$x=2$ $y=-5$	6	B1 B1 For equating $(1,2)$ component of their $3 \mathbf{A}-2 \mathbf{B}$ containing x to -5 (allow 5) If go straight to equation allow 1 sign M1 error in $3-4 x=-5$ A1 Dep on M1 For substituting their value of x into their $2^{\text {nd }}$ equation containing x and y.

Question	Working	Answer	Mark	Notes
25 (a)	$\begin{aligned} & \frac{2 x^{2}\left(10 x^{2}+13 x-3\right)}{x(5 x-1)} \text { or } \frac{2 x\left(10 x^{2}+13 x-3\right)}{(5 x-1)} \\ & \frac{x^{2}\left(20 x^{2}+26 x-6\right)}{x(5 x-1)} \text { or } \frac{x\left(20 x^{2}+26 x-6\right)}{(5 x-1)} \end{aligned}$			M1 extracting a common factor of x^{2} on the numerator and x on the denominator correctly. Or attempt at a long division dividing by $5 x-1$ or $5 x^{2}-x$ leading to $4 x^{2}+\ldots$
	$\left(" 10 x^{2}+13 x-3 "=\right) \quad(5 x-1)(2 x+3)(\mathrm{oe})$			M1 For factorising any 3 term quadratic which when expanded, the result gives at least 2 of the 3 terms from their trinomial. long division leading to $4 x^{2}+\ldots 4 x^{3}+\ldots$ A1 allow $(10 x-2)(2 x+3)$ or $(5 x-1)(4 x+6)$ long div leading to $4 x^{2}+6 x$ or $4 x^{3}+6 x^{2}$
(b)	$\frac{\mathrm{d}\left(" 4 x^{2}+8 x "\right)}{\mathrm{d} x}$	$2 x(2 x+3)$ oe	4	A1 M1 "one term" correct for differentiating their polynomial in (a)
		$8 x+6$	2	A1ft ft a polynomial with 2 or more terms

Question	Working	Answer	Mark	Notes
26 (a) (b)	$v=" 7-4 t "=0$	$v=7-4 t$	1	B1 Condone missing v M1 Their $\operatorname{part}(\mathrm{a})=0$
		$\frac{7}{4} \text { or } 1.75$	2	A1
(c)		$\frac{81}{8}, \quad 10.125$	1	B1 awrt 10.1
(d)	$\begin{aligned} & \begin{array}{l\|l\|l} s(" 1.75 ")-s(0) & s(" 1.75 ")-s(4) & 2 \times " \frac{81}{8} " \\ {[=" 10.125 "-4]} & {[=" 10.125 "-0]} & {[=20.25]} \\ \text { distance }=s(" 1.75 ")-s(0)+s(" 1.75 ")-s(4) \\ =" 10.125 "-4+" 10.125 "-0 \end{array} \\ & \text { or distance }=2 \times " \frac{81}{8}-4 \end{aligned}$			M1 Any correct method using their part(b) working must be shown if (b) incorrect
				dependent on previous M mark being awarded. Correct method to find the total dM1 distance using their part (b)
		$\begin{gathered} \frac{65}{4} \text { or } 16.25 \text { or } \\ \text { awrt } 16.3 \end{gathered}$	3	$\mathrm{A} 1$

Question	Working	Answer	Mark		
27 (a)					

